
Justin Thaler
Yahoo Labs, New York City

Modern Verifiable Computation

Lecture Outline
1.  Interactive Proofs

�  Motivation, History of Work
�  Techniques:

�  Sum-Check Protocol
�  IP=PSPACE [LFKN, Shamir]
�  MatMult Protocol [T., 2013]
�  GKR Protocol [GKR, 2008]

2.  Multi-Prover Interactive Proofs
�  Why can MIPs with polynomial-time verifiers solve harder problems than IPs?
�  Why can MIPs with linear-time verifiers solve “easy” problems more efficiently than IPs?
�  Sketch of a state-of-the-art MIP [BTVW, unpublished]

3.  PCPs
�  Reltionship to MIPs
�  A first PCP from an MIP
�  A state-of-the-art PCP [BSS08]

4.  Argument Systems
�  From “short” PCPs [Kilian 1992]
�  Without short PCPs [IKO 2007, GGPR 2013]

�  Basis of all implemented argument systems

Interactive Proofs: Motivation and
Model

Outsourcing
�  Many applications require outsourcing computation to

untrusted service providers.
� Main motivation: commercial cloud computing services.
� Also, weak peripheral devices; fast but faulty co-processors.
� Volunteer Computing (SETI@home,World Community

Grid, etc.)

�  User requires a guarantee that the cloud performed the
computation correctly.

Cloud	 Provider	 Business/Agency/Scien5st	

Cloud	 Compu5ng	

Data	

Cloud	 Provider	 Business/Agency/Scien5st	

Cloud	 Compu5ng	

Data	

Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Cloud	 Compu5ng	

Ques5on	

Data	

Answer	
Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Cloud	 Compu5ng	

Ques5on	

Data	

Answer	
Data	
Summary	

• Dropped	 Data?	 	
• Uncorrected	 fault?	
• Malicious	 cloud?	

AWS Customer Agreement
WE… MAKE NO REPRESENTATIONS OF ANY
KIND … THAT THE SERVICE OR THIRD PARTY
CONTENT WILL BE UNINTERRUPTED, ERROR
FREE OR FREE OF HARMFUL COMPONENTS,
OR THAT ANY CONTENT … WILL BE SECURE
OR NOT OTHERWISE LOST OR DAMAGED.

Goals of Verifiable Computation
1.  Provide user with guarantee of correctness.

�  Ideally user not do (much) more work than just read the input.
�  Ideally cloud will not do much more than just solve the problem.

2.  Achieve security against malicious clouds, but lightweight for
use in benign settings.

Possible Approaches
1.  Make strong assumptions.

� Replication [ACKLW02, HKD07,…] assumes majority of
responses are correct.

� Trusted hardware [JSM01, CGJ+09, SSW10…]

2.  Make minimal assumptions.
�  Interactive proofs (this part of the talk).
� Argument systems (use cryptography).

3.  Use two or more clouds.
1.  Refereed games: assumes 1 cloud is honest.
2.  Multi-Prover Interactive Proofs: assumes clouds cannot

communicate with each other.

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Data	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Data	

Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	
Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Challenge	

Response	

Data	
Summary	

Cloud	 Provider	 Business/Agency/Scien5st	

Interac5ve	 Proofs	

Ques5on	

Data	

Answer	

Challenge	

Response	

Challenge	

Response	

Accept	 	
or	

Reject	

Interactive Proofs
�  Prover P and Verifier V.

�  P solves problem, tells V the answer.
� Then P and V have a conversation.
�  P’s goal: convince V the answer is correct.

�  Requirements:
�  1. Completeness: an honest P can convince V

to accept.
�  2. Soundness: V will catch a lying P with high

probability (secure even if P is computationally
unbounded).

A Brief History of Interactive Proofs

Interactive Proofs, Pre-2008
�  1985: Introduced by [GMR, Babai].

�  IPs were believed to be just slightly more powerful than classical static
(i.e., NP) proofs.

�  i.e. let IP denote class of problems solvable by an interactive proof with a
poly-time verifier. It was believed that IP ≈ NP.

1990: [LFKN, Shamir] proved that IP=PSPACE.
i.e., IPs with a poly-time verifier can actually solve much more difficult
problems than can classical static proofs.
But IPs were still viewed as impractical.
Main reason: P’s runtime.

hen applying the protocols of [LFKN, Shamir] even to very simple problems, the
honest prover would require superpolynomial time.

Interactive Proofs, Pre-2008
�  1985: Introduced by [GMR, Babai].

�  IPs were believed to be just slightly more powerful than classical static
(i.e., NP) proofs.

�  i.e. let IP denote class of problems solvable by an interactive proof with a
poly-time verifier. It was believed that IP ≈ NP.

�  1990: [LFKN, Shamir] proved that IP=PSPACE.
�  i.e., IPs with a poly-time verifier can actually solve much more difficult

problems than can classical static proofs.
But IPs were still viewed as impractical.
Main reason: P’s runtime.

When applying the protocols of [LFKN, Shamir] even to very simple problems, the
honest prover would require superpolynomial time.

Interactive Proofs, Pre-2008
�  1985: Introduced by [GMR, Babai].

�  IPs were believed to be just slightly more powerful than classical static
(i.e., NP) proofs.

�  i.e. let IP denote class of problems solvable by an interactive proof with a
poly-time verifier. It was believed that IP ≈ NP.

�  1990: [LFKN, Shamir] proved that IP=PSPACE.
�  i.e., IPs with a poly-time verifier can actually solve much more difficult

problems than can classical static proofs.
�  But IPs were still viewed as impractical.
� Main reason: P’s runtime.

�  When applying IPs of [LFKN, Shamir] even to very simple problems, the honest
prover would require superpolynomial time.

Interactive Proofs, Post-2008
�  2008: [GKR] addressed P’s runtime.

� They gave an IP for any function computed by an efficient
parallel algorithm.

�  P runs in polynomial time.
�  V runs in (almost) linear time, so outsourcing is useful even

though problems are “easy”.

Interactive Proofs, Post-2008
�  2008: [GKR] addressed P’s runtime.

� They gave an IP for any function computed by an efficient
parallel algorithm.

�  P runs in polynomial time.
�  V runs in (almost) linear time, so outsourcing is useful even

though problems are “easy”.

�  But GKR is not practical out of the box.
�  P still requires a lot of time (cubic blowup in runtime).

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

F2 circuit

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

P starts the
conversation with
an answer (output).

The GKR Protocol: Overview

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

F2 circuit

V sends series of
challenges. P responds
with info about next
circuit level.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

F2 circuit

Challenges continue,
layer by layer down
to the the input.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

F2 circuit

Finally, P says
something about the
(multilinear extension
of the) input.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

The GKR Protocol: Overview

F2 circuit

Finally, P says
something about the
(multilinear extension
of the) input.

V sees input directly, so can check
P’s final statement directly.

Interactive Proofs, Post-2008
�  2012: [CMT] implemented the GKR protocol (with

refinements).
�  Demonstrated low concrete costs for V.
�  Brought P’s runtime down from Ω(S3), to O(S log S),

where S is circuit size.
� Key insight: use multilinear extension of circuit within

the protocol.
� Causes enormous cancellation in P’s messages, allowing

fast computation.
till not good enough on its own.

P is ~103 times slower than just evaluating the circuit.

Naïve implementation of GKR would take trillions of times
longer.
Both P and V can be sped up 40x-100x using GPUs..

Interactive Proofs, Post-2008
�  2012: [CMT] implemented the GKR protocol (with

refinements).
�  Demonstrated low concrete costs for V.
�  Brought P’s runtime down from Ω(S3), to O(S log S),

where S is circuit size.
� Key insight: use multilinear extension of circuit within

the protocol.
� Causes enormous cancellation in P’s messages, allowing

fast computation.
�  Still not good enough on its own.

�  P is ~103 times slower than just evaluating the circuit.

� Naïve implementation of GKR would take trillions of
times longer.

.

Interactive Proofs, Post-2008
�  2012: [CMT] implemented the GKR protocol (with

refinements).
�  Demonstrated low concrete costs for V.
�  Brought P’s runtime down from Ω(S3), to O(S log S),

where S is circuit size.
� Key insight: use multilinear extension of circuit within

the protocol.
� Causes enormous cancellation in P’s messages, allowing

fast computation.
�  Still not good enough on its own.

�  P is ~103 times slower than just evaluating the circuit.

� Naïve implementation of GKR would take trillions of
times longer.

�  . Both P and V can be sped up 40x-100x using GPUs [TRMP12].

Interactive Proofs, Post-2008
�  2013: [Thaler] brought P’s runtime down to O(S),

where S is circuit size, for any circuit that exhibits
repeated structure.
�  Includes any data parallel computation.

�  Experimentally yields a prover just 10x slower than a
C++ program that evaluates the circuit gate-by-gate.

Interactive Proofs, Post-2008
�  2013: [Thaler] brought P’s runtime down to O(S),

where S is circuit size, for any circuit that exhibits
repeated structure.
�  Includes any data parallel computation.

�  Experimentally yields a prover just 10x slower than a
C++ program that evaluates the circuit gate-by-gate.

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Data$

Sub(
Comp$
C$

Aggrega1on$

Interactive Proofs, Post-2008
�  2013: [Thaler] brought P’s runtime down to O(S),

where S is circuit size, for any circuit that exhibits
repeated structure.
�  Includes any data parallel computation.

�  Experimentally yields a prover just 10x slower than a
C++ program that evaluates the circuit gate-by-gate.

Problem P time
[CMT12]

P time
[T13]

Circuit Eval
Time

V time
[Both]

Protocol
Comm [T13]

Rounds
[T13]

DISTINCT
(n=220)

56.6
minutes

17.2 s 1.88 s .03 s 40.7 KB 236

Interactive Proofs in Context: Related
Work on Argument Systems

Work on Argument Systems (We’ll See Them Later)
�  Substantial body of recent work implements argument

systems with pre-processing for circuit evaluation.
�  [SMBW12, SVP+12, B-SCGT13, GGPR13, SVB+13, PHGR13,

BFR+13, B-SCGT+13, B-SCTV14, WSRBW15, CFH+15, …]

�  Advantages of our approach:
�  Secure against computationally unbounded provers.
� No or minimal pre-processing for large classes of computation.
� Unmatched prover efficiency when applicable.

�  Advantages of arguments:
� Applicable to “deep” circuits.
�  Support for “non-deterministic circuits”.
� Crypto properties: public verifiability, zero-knowledge, etc.

Comparison to Argument Systems, Cont’d
�  [WHGSW16] have implemented our interactive proofs in

hardware.
� Motivation: Protecting against Hardware Trojans.

�  They chose our interactive proofs instead of argument systems
because of advantages not mentioned on previous slide.
�  IPs do not require crypto operations (expensive; hard to

implement in hardware).
� Our IPs permit superior parallelization for both P and V.
� Our IPs have highly local data flows.

�  Existing argument systems require P to perform FFTs on vectors as large
as the circuit being verified, and all “parts” of the prover algorithm must
touch these vectors.

Interactive Proof Techniques:
Preliminaries

Schwartz-Zippel Lemma
�  Informally: any two distinct low-degree polynomials over F

disagree at a randomly chosen input with high probability.

�  Formally: let be d-variate polynomials over field F. Then

 when each is chosen at random from F.

Pr[g1(r1,..., rd) = g2 (r1,..., rd)]≤max(deg(g1), deg(g2))/ |F |

ri

g1 ≠ g2

Low-Degree and Multilinear Extensions
�  Definition [Extensions]. Given function defined on where

F is a field,a variate polynomial over F is said to extend
if for all

�  Definition [Multilinear Extensions]. Any function
 has a unique multilinear extension (MLE),
 denoted

Can view as error

g
f (x) = g(x)

f : {0,1}v → F,
f

x ∈ {0,1}v.
v−

f : {0,1}v → F
f .~

1 2

8 10

f : {0,1}2 → F

1 2

8 10

f :F2 → F~

3 4

12 14

15 18

22 26

21 24

30 34

29 34

36 42

39 44

48 54

5 6

16 18

27 30

38 42

49 56

60 68

A Useful Expression for the MLE
�  Lemma (Lagrange Interpolation): Letdefined on Then as

formal polynomials,

 where

 is the MLE of the function

f : {0,1}v → F.

Equation (*) : f (x) = f (w)•δw
w∈{0,1}logn
∑ (x),

δw (x) = (xiwi + (1− xi)(1−wi))
i=1

v

∏

~~

~

δw : {0,1}v → F defined via:

δw (y) =1 if y = w, and δw (y) = 0 otherwise.

Evaluating The MLE At Any Point, Efficiently
�  Let Given as input
 for all one can compute in time and
 space with a single streaming pass over the input.
Proof: Compute (*) from previous slide by initializing
 defined on and processing update via:

f : {0,1}v → F, r ∈ Fv, and n = 2v. f (w)
w ∈ {0,1}v, f (r) O(n logn)

O(logn)

~

Evaluating The MLE At Any Point, Efficiently
�  Let Given as input
 for all one can compute in time and
 space with a single streaming pass over the input.

�  Proof:

 Compute RHS by initializing n and processing update
 via:

f : {0,1}v → F, r ∈ Fv, and n = 2v. f (w)
w ∈ {0,1}v, f (r) O(n logn)

O(logn)

~

f (r)← 0
~

(w, f (w))
 f (r)← f (r)+ f (w)•δ(r).
~

Evaluation takes O(logn) to compute.

By Equation (*) : f (r) = f (w)•δw
w∈{0,1}logn
∑ (r).

~~

~ ~

Evaluating The MLE At Any Point, Efficiently
�  Let Given as input
 for all one can compute in time and
 space with a single streaming pass over the input.

�  Proof:

 Compute RHS by initializing n and processing update
 via:

�  Can also reduce runtime to O(n) using dynamic programming,
but this requires more space [Vu et al., 2013].

f : {0,1}v → F, r ∈ Fv, and n = 2v. f (w)
w ∈ {0,1}v, f (r) O(n logn)

O(logn)

~

f (r)← 0
~

(w, f (w))
 f (r)← f (r)+ f (w)•δ(r).
~

By Equation (*) : f (r) = f (w)•δw
w∈{0,1}logn
∑ (r).

~~

~ ~

A Final Technical Hammer: Sum-
Check Protocol [LFKN90]

Sum-Check Protocol [LFKN90]
�  Input: V given oracle access to a d-variate polynomial g

over field F with for all
�  Goal: compute the quantity:

... g(b1,...,bd)
bd∈{0,1}
∑

b2∈{0,1}
∑

b1∈{0,1}
∑

degi (g) =O(1) i ∈ {1,...,d}.

�  Start: P sends claimed answer
�  Round 1: P sends univariate polynomial claimed to equal

�  V checks that
�  V picks at random from F and lets
�  Round 2: V sends to P. They recursively check that

�  Round d: P sends univariate polynomial claimed to equal

�  V picks at random, checks that

... g(X1,b2,...,bd)
bd∈{0,1}
∑

b2∈{0,1}
∑

sd (Xd)

C1 = s1(0)+s1(1).
r1

r1
C2 = ... g(r1,b2,...,bd)

bd∈{0,1}
∑

b2∈{0,1}
∑

C1.
s1(X1)

g(r1, r2,..., rd−1,Xd).

rd sd (rd) = g(r1, r2,..., rd).

Goal: Compute the quantity

C2 = s1(r1).

Costs of Sum-Check Protocol
�  P sends d messages, each a univariate polynomial of

degree
�  V processes each message in O(1) time, and makes one

oracle query to g in final round.
�  P computes a sum over up to 2d-i terms in round i.

Naively, this requires evaluating g at 2d-i points.

degi (g) =O(1).

First Application of Sum-Check:
An IP For #SAT [LFKN]

#SAT Problem
�  Let be a Boolean formula of size S over variables.

φ n

#SAT Problem
�  Let be a Boolean formula of size S over variables.

φ n

x1# x2# x3# x4#

¬#
�#

�#

�#

Figure 1: A Boolean formula f .

x1# x2# x3# x4#

'#
×# +#

×#

1#

×#

'#

Figure 2: An arithmetic circuit y computing a polynomial
extension g of f over a finite field F.

P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp

12

#SAT Problem
�  Let be a Boolean formula of size S over variables.
�  Goal: Compute

Protocol: Apply sum-check to an extension polynomial g of

φ n
φ(x).

x∈{0,1}w
∑

#SAT Problem
�  Let be a Boolean formula of size S over variables.
�  Goal: Compute

�  Protocol: Apply sum-check to an extension polynomial g of

� Note: in final round, V needs to compute g(r) for some
randomly chosen r in Fn.

φ n
φ(x).

x∈{0,1}w
∑

φ.

#SAT Problem
�  Let be a Boolean formula of size S over variables.
�  Goal: Compute

�  Protocol: Apply sum-check to an extension polynomial g of

� Note: in final round, V needs to compute g(r) for some randomly
chosen r in Fn.

�  Where does g come from? Arithmetize
�  i.e., replace with arithmetic circuit computing extension g of

�  AND(y1, y2) multiplication gate y1*y2.
�  NOT(y1) 1-y1
�  OR(y1, y2) y1 + y2 – y1*y2.

� Total degree of g is at most S, and V can evaluate g(r) gate-by-gate
in time O(S).

φ n
φ(x).

x∈{0,1}w
∑

φ.

φ.
φ.φ

⇒
⇒
⇒

x1# x2# x3# x4#

¬#
�#

�#

�#

Figure 1: A Boolean formula f .

x1# x2# x3# x4#

'#
×# +#

×#

1#

×#

'#

Figure 2: An arithmetic circuit y computing a polynomial
extension g of f over a finite field F.

P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp

12

x1# x2# x3# x4#

¬#
�#

�#

�#

Figure 1: A Boolean formula f .

x1# x2# x3# x4#

'#
×# +#

×#

1#

×#

'#

Figure 2: An arithmetic circuit y computing a polynomial
extension g of f over a finite field F.

P can be computed in space poly(c(n)), as x 2 L if and only if this acceptance probability is larger 1/3 for
some P . Eliding some details, this acceptance probability for any prover strategy P can be computed by
enumerating over every possible setting of the verifier’s random coins and computing the fraction of settings
that lead the verifier to accept.

The more challenging direction is to show that PSPACE ✓ IP. The #SAT protocol of Lund et al.
[LFKN92] described above already contains the main ideas necessary to prove this. Shamir [Sha92] ex-
tended the #SAT protocol to solve the PSPACE-complete language TQBF, and Shen [She92] gave a simpler
proof (the cost of Shamir’s and Shen’s protocols are similar to those of the #SAT protocol described above).
We do not cover Shamir or Shen’s extensions here, since Lecture 2 will provide a different and quantitatively
stronger proof that PSPACE ✓ IP.

Open Problem: On The Power of the Prover, or Are Sum-Check Techniques Really Necessary to Solve
Languages in coNP? The prover in the protocol for the PSPACE-complete problem TQBF can itself be
implemented in PSPACE. Similarly, the prover in the #P-complete problem #SAT protocol can itself be
implemented via polynomially many calls to a function in #P. However, there is no known interactive for
the coNP-complete language ¯3SAT in which the prover need not solve #P-complete problems. Is there
a protocol for ¯3SAT with a prover that can be implemented in, say, PNP? Under plausible complexity
assumptions, PNP is powerful enough to approximate the number of satisfying assignments to a factor of
1±1/poly(n),4, but is not believed to be powerful enough to exactly count them, as can be done in #P.

1.7 A Second Application of Sum-Check: An Optimal Interactive Proof for Matrix Multi-
plication

This section describes a highly optimized IP protocol for matrix multiplication (MATMULT) from [Tha13].
While this MATMULT protocol is of interest in its own right, it is included here for didactic reasons: it
displays, in a clean and unencumbered setting, all of the algorithmic insights that are exploited later in this
survey to give more general IP and MIP protocols.

4See e.g. http://mathoverflow.net/questions/2218/characterize-pnp

12

Transforming a Boolean circuit into an arithmetic circuit
computing an extension of

φ.

φ

Costs of #SAT Protocol for Φ
�  Let be a Boolean formula of size S over variables.

φ n

Rounds Communication V Time P Time

n P sends a degree S
polynomial in reach round

O(S*n) field elements

sent in total.

• O(S) time to process each
of the n messages of P
• O(S) time to evaluate g(r)

 O(S*n) time total

P must evaluate g
at O(2n) points to
determine each

message

O(S*n*2n) time in
total.

⇒ ⇒
⇒

Second Application: An Optimal
Interactive Proof For Matrix Multiplication

[Thaler13]: Optimal IP For n x n MatMult
�  Goal: Given n x n matrices A, B over field F, compute C=A*B.

[Thaler13]: Optimal IP For n x n MatMult
�  Goal: Given n x n matrices A, B over field F, compute C=A*B.
�  P simply determines the “right answer”, and then P does O(n2)

extra work to prove its correctness.
�  Doesn’t matter how P obtains the right answer!
�  Optimal runtime up to leading constant assuming no O(n2)

time algorithm for MatMult.
�  V runs in linear time (which is also optimal).

[Thaler13]: Optimal IP For n x n MatMult
�  Goal: Given n x n matrices A, B over field F, compute C=A*B.
�  P simply determines the “right answer”, and then P does O(n2)

extra work to prove its correctness.
�  Doesn’t matter how P obtains the right answer!
�  Optimal runtime up to leading constant assuming no O(n2)

time algorithm for MatMult.
�  V runs in linear time (which is also optimal).

Problem
Size

Naïve
MatMult

Time

Additional P
time

V Time Rounds Protocol
Comm

1024 x 1024 2.17 s 0.03 s 0.09 s 11 264 bytes

2048 x 2048 18.23 s 0.13 s 0.30 s 12 288 bytes

Comparison to Freivalds’ Algorithm
�  Freivalds (MFCS, 1979) gave the following protocol for

MatMult. To check AB=C:
� V picks random vector x.
� Accepts if A*(Bx) = Cx.
� No extra work for P, O(n2) time for V.

Our big win: verifying algorithms that invoke MatMult, but
aren’t really interested in matrices.

E.g. Best-known graph diameter algorithms square the adjacency
matrix, but are only interested in a single number.
Total communication for us is O(log2 n), Freivalds’ is Ω(n2).

Next talk gives non-interactive protocols for more complicated
linear-algebraic problems.

Comparison to Freivalds’ Algorithm
�  Freivalds (MFCS, 1979) gave the following protocol for

MatMult. To check AB=C:
� V picks random vector x.
� Accepts if A*(Bx) = Cx.
� No extra work for P, O(n2) time for V.

�  Our big win: verifying algorithms that invoke MatMult, but
aren’t really interested in matrices.
�  E.g. Best-known graph diameter algorithms square the adjacency

matrix, but are only interested in a single number.
� Total communication for us is O(log2 n), Freivalds’ is Ω(n2).

Next talk gives non-interactive protocols for more complicated
linear-algebraic problems.

MatMult Protocol: Technical Details

Notation
�  Given input matrices A, B over field F, interpret A and

B as functions mapping to F via:

�  Let C=A*B denote the true answer.

�  Let denote the multilinear extensions
of the functions A and B.

n×n
{0, 1}log n ×{0, 1}log n

A(i1,..., ilogn, j1,..., jlogn) = Aij.

A,B :Flog n ×Flog n → F~ ~

1 2

8 10

D : {0,1}2 → F

1 2

8 10

D :F2 → F~

3 4

12 14

15 18

22 26

21 24

30 34

29 34

36 42

39 44

48 54

5 6

16 18

27 30

38 42

49 56

60 68

1 2

8 10

D :F2 → F~

3 4

12 14

15 18

22 26

21 24

30 34

29 34

36 42

39 44

48 54

5 6

16 18

27 30

38 42

49 56

60 68

MatMult Protocol
�  P sends a matrix claimed to equal C=A*B.
�  V evaluates at a random point
�  By Schwartz-Zippel: it is safe for V to believe that equals

the correct answer as long as:

�  Goal becomes: compute

D (r1,r2)∈ F
logn ×Flogn.

D(r1,r2) =C(r1,r2).

D

D
C

C(r1, r2).

~

~ ~

~

C(r1, r2) = ... g(b1,...,blogn)
blogn∈{0,1}
∑ ,

b2∈{0,1}
∑

b1∈{0,1}
∑

where g(z) = A(r1,z)*B(z,r2).

MatMult Protocol
�  Goal: Compute
�  For Boolean vectors , clearly:

�  This implies the following polynomial identity:

�  So V applies sum-check protocol to compute

C(r1, r2).
i, j∈ {0,1}logn

C(i, j) = A(i,k)B(k, j)
k∈{0,1}logn
∑ .

C(x, y) = A(x,b)B(b, y)
b∈{0,1}logn
∑ .

i, j∈ {0,1}logn

C(i, j) = A(i,k)B(k, j)
k∈{0,1}logn
∑ .

C(r1, r2).

C(x, y) = A(x,b)B(b, y)
b∈{0,1}logn
∑ .

~

~ ~ ~

~

~ ~

Making V Fast
�  At end of sum-check, V must evaluate
�  Suffices to evaluate

g(r3) = A(r1,r3)•B(r3,r2).
A(r1,r3) and B(r3,r2). How?

~ ~
~ ~

Making V Fast
�  At end of sum-check, V must evaluate
�  Suffices to evaluate
�  Can be done in O(n2) time by “Fast Evaluation of MLE”

lemma in preliminaries.

A(r1,r3) and B(r3,r2). How?

~ ~
~ ~

g(r3) = A(r1,r3)•B(r3,r2).

Making P Fast
�  Recall: using sum-check to compute
�  Round i: P sends quadratic polynomial claimed to equal:

�  Suffices for P to specify
�  Thus: Enough to evaluate g at all points of the form
Previous slide: For each point, P can compute in
O(n2) time by evaluating

This yields O(n*n2)=O(n3) total time. Can we improve this?
Yes, because each gate contributes to only one term in (*).

g(k1,...,klogn)
k∈{0,1}logn
∑ .

... g(r3,1,..., r3,i−1,Xi,bi+1...,blogn)
blogn∈{0,1}
∑

bi+1∈{0,1}
∑ .

si (Xi)

si (0), si (1), and si (2).

(r3,1,..., r3,i−1,{0,1, 2},bi+1...,blogn) : (bi+1...,blogn)∈ {0,1}
logn−i.

Making P Fast
�  Enough to evaluate g at all points of the form:
Previous slide: For each point, P can compute (r3,1,..., r3,i−1,{0,1, 2},bi+1...,blogn) : (bi+1...,blogn)∈ {0,1}

logn−i.

Making P Fast
�  Enough to evaluate g at all points of the form:
Previous slide: For each point, P can compute
�  Already showed: Can evaluate g at any point in O(n2) time.
�  By determining the contribution of each matrix entry Aij, Bij independently.

�  So O(n*n2)=O(n3) total time. Can we improve this?

(r3,1,..., r3,i−1,{0,1, 2},bi+1...,blogn) : (bi+1...,blogn)∈ {0,1}
logn−i.

Making P Fast
�  Enough to evaluate g at all points of the form:

�  Already showed: Can evaluate g at any point in O(n2) time.
�  By determining the contribution of each matrix entry Aij, Bij independently

�  So O(n*n2)=O(n3) total time. Can we improve this?
�  Yes: each entry Aij contributes to
 for only one tuple

g(r3,1,..., r3,i−1,{0,1, 2},bi+1...,blogn)

(bi+1...,blogn)∈ {0,1}
logn−i.

(r3,1,..., r3,i−1,{0,1, 2},bi+1...,blogn) : (bi+1...,blogn)∈ {0,1}
logn−i.

Making P Fast
� 

�  Only interested in z’s of the form

�  Claim:

A(r1,z) = Aijδ (i, j)
i, j∈{0,1}logn
∑ (r1,z).

δ
~

(i, j) (r1,z) = 0 unless (ji+1..., jlogn) = (bi+1...,blogn)

z = (r3,1,..., r3,i−1,{0,1, 2},bi+1...,blogn).

~ ~

Implementing P Quickly
�  Summary: In round i, P must evaluate g at n/2i points of a

special form (trailing entries are Boolean).
�  Each matrix entry Aij, Bij contributes to only one of these

evaluations.
�  So P can run in O(n2) time per round, or O(n2 log n) time

across all log n rounds.

Implementing P Quickly
�  With care: can bring P’s time down to O(n2).
�  Key idea: Reuse work across rounds.

�  If two entries agree in their
last k bits, then Aij and Ai’j’ contribute to the same point in rounds
k and up.

� Can treat (i,j) and (i’,j’) as a single entity thereafter.
� Only n/2k, entities of interest in round k.
� Total work across all rounds is proportional to

(i, j), (i', j')∈ {0, 1}log n ×{0, 1}log n

n / 2k
1≤k≤logn
∑ = 2n.

Third Application: The GKR Protocol

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

P starts the
conversation with
an answer (output).

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

V sends series of
challenges. P responds
with info about next
circuit level.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

Challenges continue,
layer by layer down
to the the input.

a1  a2  a3  a4 

x  x  x  x 

+  + 

+ 

F2 circuit

The GKR Protocol: Overview
Layer 1

Layer 2

Layer 3

Layer 4

Finally, P says
something about
the (multilinear
extension of the)
input.

Notation
�  Assume layers i and i+1 of C have S gates each.

� Assign each gate a binary label (log S bits).

�  Let output the value of gate a at layer i.
�  Let output 1 iff
 and gate a is an addition gate.
�  Let output 1 iff
 and gate a is a multiplication gate.

Wi (a) :{0,1}log S → F
addi (a, b, c) :{0,1}3logS → F

(b, c)=(in1(a), in2 (a))

(b, c)=(in1(a), in2 (a))

mult i (a, b, c) :{0,1}3logS → F

a

a

a

GKR Protocol: Goal of Iteration i
�  Iteration i starts with a claim from P about for a

random point

�  Goal: Reduce this to a claim about for a random
point

�  Key Polynomial Identity. The following equality holds as
formal polynomials:

Wi (r1)
r1 ∈ F

logS.

Wi+1(r2)
r2 ∈ F

logS.

 Wi (a) =

addi (a, b, c) Wi+1(b)+Wi+1(c)
!
"
#

$
%
&+mult i (a, b, c) Wi+1(b)•Wi+1(c)

!
"
#

$
%
&

b,c∈{0,1}logS
∑ .

~

~

~~~~~~

~



GKR Protocol: Goal of Iteration i 
�  So V applies sum-check protocol to compute 

          Wi (r1) =

addi (r1, b, c) Wi+1(b)+Wi+1(c)
!
"
#

$
%
&+mult i (r1, b, c) Wi+1(b)•Wi+1(c)

!
"
#

$
%
&

b,c∈{0,1}logS
∑ .

~~~~~~

~

GKR Protocol: Goal of Iteration i
�  So V applies sum-check protocol to compute

�  At end of sum-check protocol, V must evaluate

 for randomly chosen

�  Let us assume V can compute
 unaided in polylog(n) time.

�  Then V only needs to know and to complete this check.
�  Then iteration i+1 is devoted to computing these values.

addi (r1, r2, r3) Wi+1(r2)+Wi+1(r3)
!
"
#

$
%
&+mult i (r1, r2, r3) Wi+1(r2)•Wi+1(r3)

!
"
#

$
%
&

~ ~ ~ ~ ~ ~

r2, r3 ∈ {0,1}
logS.

addi (r1, r2, r3) and mult i (r1, r2, r3)

Wi+1(r2) Wi+1(r3)

~ ~

~ ~

~~~~~~

~
          Wi (r1) =

addi (r1, b, c) Wi+1(b)+Wi+1(c)
!
"
#

$
%
&+mult i (r1, b, c) Wi+1(b)•Wi+1(c)

!
"
#

$
%
&

b,c∈{0,1}logS
∑ .



Remaining Issue: Reducing to 
Verification of a Single Point 
�  There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration i+1. 

�  Solution: Reduce verifying both of the above values to verifying 
       for a single point  

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.



Remaining Issue: Reducing to 
Verification of a Single Point 
�  There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration i+1. 

�  Solution: Reduce verifying both of the above values to verifying 
       for a single point  

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.

Extended Hypercube  

FlogS

W

W
Boolean Hypercube  

{0,1}logS

~



Remaining Issue: Reducing to 
Verification of a Single Point 
�  There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration i+1. 

�  Solution: Reduce verifying both of the above values to verifying 
       for a single point  

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.

Extended Hypercube  

FlogS

W

W
Boolean Hypercube  

{0,1}logS

r3

r2

~



Remaining Issue: Reducing to 
Verification of a Single Point 
�  There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration i+1. 

�  Solution: Reduce verifying both of the above values to verifying 
       for a single point  

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.

Extended Hypercube  

FlogS

W

W
Boolean Hypercube  

{0,1}logS

Challenge lineλ 
r2

r3

~



Remaining Issue: Reducing to 
Verification of a Single Point 
�  There is one remaining problem: we don’t want to have to separately 

verify both                and                in iteration i+1. 

�  Solution: Reduce verifying both of the above values to verifying 
       for a single point  

Wi+1(r2 ) Wi+1(r3)
~ ~

Wi+1(r4 )
~ r4 ∈ F

logS.

Extended Hypercube  

FlogS

W

W
Boolean Hypercube  

{0,1}logS

r2

r3

Challenge lineλ 

r4

~



Multi-Prover Interactive Proofs 



Lecture Outline 
1.  Interactive Proofs 

�  Motivation, History of Work 
�  Techniques: 

�  Sum-Check Protocol 
�  IP=PSPACE [LFKN, Shamir] 
�  MatMult Protocol [T., 2013] 
�  GKR Protocol [GKR, 2008] 

2.  Multi-Prover Interactive Proofs 
�  Why can MIPs with polynomial-time verifiers solve harder problems than IPs? 
�  Why can MIPs with linear-time verifiers solve “easy” problems more efficiently than IPs? 
�  Sketch of a state-of-the-art MIP [BTVW, unpublished] 

3.  PCPs 
�  Reltionship to MIPs 
�  A first PCP from an MIP 
�  A state-of-the-art PCP [BSS08]  

4.  Argument Systems 
�  From “short” PCPs [Kilian 1992] 
�  Without short PCPs [IKO 2007, GGPR 2013]  

�  Basis of all implemented argument systems 



A k-Prover MIP  
[Ben-Or, Goldwasser, Kilian, Wigderson, 1988] 

P1 

P2 

Pk 

° 
° 
° 
 

V 

Provers cannot 
communicate with 

each other. 



What Does a Second Prover Buy? 
�  First Answer: Non-Adaptivity. 
�  Theorem [FRS 1994]: Let L be a language and M a probabilistic polynomial 

time Turing Machine such that: 
a)  x in L       there exists an oracle O such that MO accepts x with probability 1. 
b)  x not in L        for all oracles O, MO rejects x with probability at least 2/3.  
Then there is a 2-prover MIP for L where V runs in polynomial time. 

Proof: The MIP is 
V simulates M on input x and every time M poses a query qi to the oracle, V asks qi to P1.  
Afterward, V picks a random qi and asks it to P2. 
V outputs 0 if P2’s answer to qi does not match P1’s, or if M would output 0 when treating 
P1’s answers as the oracle’s responses. 
V repeats the above 3k times, where k is an upper bound on the number of oracle queries 
M makes. At the end, if V hasn’t output 0, it outputs 1. 

⇔
⇔



What Does a Second Prover Buy? 
�  First Answer: Non-Adaptivity. 
�  Theorem [FRS 1990]: Let L be a language and M a probabilistic polynomial 

time Turing Machine such that: 
a)  x in L       there exists an oracle O such that MO accepts x with probability 1. 
b)  x not in L        for all oracles O, MO rejects x with probability at least 2/3.  
Then there is a 2-prover MIP for L where V runs in polynomial time. 

�  Proof: The MIP is 
�  V simulates M on input x and every time M poses a query qi to the oracle, V asks qi to P1.  
�  Afterward, V picks a random qi and asks it to P2. 
�  V outputs 0 if P2’s answer to qi does not match P1’s, or if M would output 0 when 

treating P1’s answers as the oracle’s responses. 
�  V repeats the above 3k times, where k is an upper bound on the number of oracle 

queries M makes. At the end, if V hasn’t output 0, it outputs 1. 

⇔
⇔



But What Does Non-Adaptivity Buy?  
�  Answer: Efficient support for non-determinism.  

�  For any language L is in NP, the provers will be able to convince V that 
they hold a witness w that the input is in L, without sending w to V.  
�  This is the core of the famous result that MIP=NEXP [BFL 1991], and ultimately 

of the PCP theorem. 

But in the real world, no one is solving NEXP-complete problems (or 
even NP-complete problems) in the worst case.  

Can MIPs solve “easy” problems more efficiently than IPs? 
Answer: Yes. 
Reason: Support for non-determinism enables more efficient 
transformations from computer programs to problems amenable to 
probabilistic checking (i.e., circuit evaluation).  

 



But What Does Non-Adaptivity Buy?  
�  Answer: Efficient support for non-determinism.  

�  For any language L is in NP, the provers will be able to convince V that 
they hold a witness w that the input is in L, without sending w to V.  
�  This is the core of the famous result that MIP=NEXP [BFL 1991], and ultimately 

of the PCP theorem. 

�  But in the real world, no one is solving NEXP-complete problems 
(or even NP-complete problems) in the worst case.  
� Can MIPs solve “easy” problems more efficiently than IPs? 
� Answer: Yes. 
� Reason: Support for non-determinism enables more efficient 

transformations from computer programs to problems amenable to 
probabilistic checking (i.e., circuit evaluation).  

 



Efficient Reductions from RAMs to Non-
Deterministic Circuit Evaluation 

�  Suppose we have a RAM M running in time T.  
�  We will turn M into a non-deterministic circuit C of size 

O(T*polylog T) that computes the same function as M. That is: 
� C will take an explicit input x and non-deterministic input w. 
� M accepts x        there is a w such that C(x, w)=1. 
�  Such efficient transformations from RAMs to deterministic circuits 

are not known. 

�  And then we can apply to C an efficient MIP for non-deterministic circuit 
evaluation. 

  

⇔



Sketch of the Transformation  
[Gurevich and Shelah 89, Robson91, Ben-Sasson et al. 2013] 

�  A trace of M on input x is the list of the (time, configuration) pairs that 
arise when running M on x. 
�  A configuration specifies the bits in M’s program counter and registers. 

�  C takes x as explicit input, and takes an entire trace of M as non-
deterministic input. 

�  C then checks the trace for correctness, and if so outputs whatever M 
outputs in the trace. 
So M accepts x if and only if there is some trace w such that C(x, w)=1. 
C must check two properties of the trace. 

ime consistency (the claimed state at time t correctly follows from the claimed state at 
time t-1).  
Memory consistency (whenever M reads a value from a memory location, the value 
that is returned is the last value that was written).  
Time-consistency is easy to check: represent M’s transition function as a small subcircuit, 
apply it to each entry t of the trace and check that it equals entry t+1. 
Checking memory consistency is done by “re-sorting the trasncript based on memory 
location, with ties broken by time. 

  



�  A trace of M on input x is the list of the (time, configuration) pairs that 
arise when running M on x. 
�  A configuration specifies the bits in M’s program counter and registers. 

�  C takes x as explicit input, and takes an entire trace of M as non-
deterministic input. 

�  C then checks the trace for correctness, and if so outputs whatever M 
outputs in the trace. 

So M accepts x if and only if there is some trace w such that C(x, w)=1. 
C must check two properties of the trace. 

ime consistency (the claimed state at time t correctly follows from the claimed state at 
time t-1).  
Memory consistency (whenever M reads a value from a memory location, the value 
that is returned is the last value that was written).  
Time-consistency is easy to check: represent M’s transition function as a small subcircuit, 
apply it to each entry t of the trace and check that it equals entry t+1. 
Checking memory consistency is done by “re-sorting the trasncript based on memory 
location, with ties broken by time. 

  

x Purported Trace of M’s Execution on x 

Circuit C checks if the trace actually 
corresponds to M’s executing on x  
(This requires T * polylog(T) gates)  

Outputs 1 iff trace is correct and ends with M outputting 1. 

Sketch of the Transformation  
[Gurevich and Shelah 89, Robson91, Ben-Sasson et al. 2013] 



�  A trace of M on input x is the list of the (time, configuration) pairs that 
arise when running M on x. 
�  A configuration specifies the bits in M’s program counter and registers. 

�  C takes x as explicit input, and takes an entire trace of M as non-
deterministic input. 

�  C then checks the trace for correctness, and if so outputs whatever M 
outputs in the trace. 
�  C must check two properties of the trace. 

�  Time consistency (the claimed state at time t correctly follows from the claimed state 
at time t-1).  

�  Memory consistency (whenever M reads a value from a memory location, the value 
that is returned is the last value that was written).  

�  Time-consistency is easy to check: represent M’s transition function as a small 
subcircuit, apply it to each entry t of the trace and check that it equals entry t+1. 

�  Checking memory consistency is done by “re-sorting” the trasncript based on memory 
location, with ties broken by time. 
  

Sketch of the Transformation  
[Gurevich and Shelah 89, Robson91, Ben-Sasson et al. 2013] 



Non-Deterministic Circuit Evaluation 
�  Given: An arithmetic circuit C over F of size S with explicit input x 

and non-deterministic input w, and claimed output(s) y. 
�  Goal: Determine if there exists a w such that C(x, w)=y. 
Assign each gate in C a (log S)-bit label.  
Call a function                              a transcript for C. 

Say that     is correct if it satisfies the following properties: 
The values W assigns to the explicit input gates equal x. 
The value W assigns to the output gates is 1. 
The values W assigns to the intermediate gates correspond to the correct operation of 
the gates. 
Clearly there is a w such that C(x, w)=1 iff there is a correct transcript for C.  



Non-Deterministic Circuit Evaluation 
�  Given: An arithmetic circuit C over F of size S with explicit input x 

and non-deterministic input w, and claimed output(s) y. 
�  Goal: Determine if there exists a w such that C(x, w)=y. 
�  Assign each gate in C a (log S)-bit label.  
�  Call a function                              a transcript for C. 

�  Say that     is correct on x if it satisfies the following properties: 
�  The values W assigns to the explicit input gates equal x. 
�  The value W assigns to the output gates is y. 
�  The values W assigns to the intermediate gates correspond to the correct 

operation of the gates. 
�  Clearly there is a w such that C(x, w)=1 iff there is a correct transcript for C.  

W : {0,1}logS → F
W



�  Protocol Sketch:  
�  P1 and P2 claim to hold an extension Z of a correct transcript W for C. 
�  Identify a polynomial                                      (that depends on x and Z) such that: 
      Z extends a correct transcript  
V checks this by running sum-check protocol with P1 to compute 

  

To perform final check in sum-check protocol, V needs to evaluate  
    at a random point. But this requires evaluating Z at a random point, 

   and Z only “exists” in P1’s head. 
So V asks P2 for the evaluation of Z.  

Soundness analysis of sum-check is valid as long as P2’s claim about Z is consistent with 
a low-degree polynomial. So V also runs a low-degree test with P1 and  P2 . 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Sketch of 2-Prover MIP for Non-Deterministic 
Circuit Evaluation  

[Blumberg, Thaler, Vu, Walfish, unpublished] 



�  Protocol Sketch:  
�  P1 and P2 claim to hold an extension Z of a correct transcript W for C. 
�  Identify a polynomial                                      (that depends on x and Z) such that: 
      Z extends a correct transcript  
�  V checks this by running sum-check protocol with P1 to compute 

  

To perform final check in sum-check protocol, V needs to evaluate  
    at a random point. But this requires evaluating Z at a random point, 

   and Z only “exists” in P1’s head. 
V asks P2 for the evaluation of Z.  

oundness analysis of sum-check is valid as long as P2’s claim about Z is consistent with 
a low-degree polynomial. So V also runs a low-degree test with P1 and  P2. 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.

0 = g2x,Z (a,b,c)
(a,b,c)∈{0,1}3logS
∑ .?

⇔

Sketch of 2-Prover MIP for Non-Deterministic 
Circuit Evaluation  

[Blumberg, Thaler, Vu, Walfish, unpublished] 



�  Protocol Sketch:  
�  P1 and P2 claim to hold an extension Z of a correct transcript W for C. 
�  Identify a polynomial                                      (that depends on x and Z) such that: 
      Z extends a correct transcript  
�  V checks this by running sum-check protocol with P1 to compute 

�    

� To perform final check in sum-check protocol, V needs to evaluate  
    at a random point. But this requires evaluating Z at a random point, 

   and Z only “exists” in P1’s head. 
�  So V asks P2 for the evaluation of Z.  

�  Soundness analysis of sum-check is valid as long as P2’s claim about Z is consistent 
with a low-degree polynomial. So V also runs a low-degree test with P1 and P2. 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.

0 = g2x,Z (a,b,c)
(a,b,c)∈{0,1}3logS
∑ .?

g2x,Z

⇔

Sketch of 2-Prover MIP for Non-Deterministic 
Circuit Evaluation  

[Blumberg, Thaler, Vu, Walfish, unpublished] 



�  Identify a polynomial                                      (that depends on x and Z) such that: 
      Z extends a correct transcript  

Let add(a,b,c) output 1 iff (b,c)=(in1(a), in2(a)) and gate a is an addition gate. 
et mult(a,b,c) output 1 iff (b,c)=(in1(a), in2(a)) and gate a is a mult gate. 
Let io(a,b,c) output 1 iff gate a is in the explicit input x and (b,c)=(0, 0)      OR if 
a is an output gate and b and c are in-neighbors of a. 
Let Ix(a) output xa if a is an input gate, 1 if a is an output gate, and 0 otehrwise. 
Key Lemma: For Ga,b,W:{0,1}3log S             defined below, W is a correct transcript on x 
iff Ga,b,W(a,b,c)=0 for all (a, b, c) in {0,1}3log S. 
    Ga,b,W(a,b,c)=io(a,b,c)*(Ix(a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a, b, c) * (W(a)-W(b)*W(c)). 

     Proof: A case analysis depending on whether a is an input gate, non-output gate,    
    output addition gate, or output multiplication gate. Exploits non-trivial cancellation. 
So we define:  

gx,Z : {0,1}
3logS → F
⇔

Definition of the Key Polynomial 

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.



�  Identify a polynomial                                      (that depends on x and Z) such that: 
      Z extends a correct transcript  

�  Let add(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))   and gate    is an addition gate. 
�  Let mult(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))    and gate     is a mult gate. 
�  Let io(a,b,c)   output 1 iff gate    is in the explicit input x and (b,c)=(0, 0)       
    or if a is an output gate and b and    are in-neighbors of   . 
�  Let Ix(a)  output xa if a is an input gate, ya if a is an output gate, and 0 otherwise. 
�  Key Lemma: For Ga,b,W:{0,1}3log S             defined below, W is a correct transcript 

on x iff Ga,b,W(a,b,c)=0 for all (a, b, c)  in {0,1}3log S. 
    Ga,b,W(a,b,c)=io(a,b,c)*(Ix(a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a, b, c) * (W(a)-W(b)*W(c)). 

     Proof: A case analysis depending on whether a is an input gate, non-output gate,    
    output addition gate, or output multiplication gate. Exploits non-trivial cancellation. 
So we define:  

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Definition of the Key Polynomial 

Gx,W : {0,1}
3logS → F

add(a, b, c)
mult(a, b, c)
io(a, b, c)

(b, c)=(in1(a), in2 (a)) 
(b, c)=(in1(a), in2 (a)) 

a
a

a (b, c)=(0,0),
acb
x

aaxaIx (a)

Gx,W (a, b, c) = 0 (a, b, c) {0,1}3logS.
Gx,W (a, b, c) := io(a, b, c)•(Ix (a)-W(a)) + add(a, b, c)(W(a)-(W(b)+W(c)) + mult(a, b, c) •  (W(a)-W(b)•W(c))

ya



�  Identify a polynomial                                      (that depends on x and Z) such that: 
      Z extends a correct transcript  

�  Let add(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))   and gate    is an addition gate. 
�  Let mult(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))    and gate     is a mult gate. 
�  Let io(a,b,c)   output 1 iff gate    is in the explicit input x and (b,c)=(0, 0)       
    or if a is an output gate and b and    are in-neighbors of   . 
�  Let Ix(a)  output xa if a is an input gate, ya if a is an output gate, and 0 otherwise. 
�  Key Lemma: For Ga,b,W:{0,1}3log S             defined below, W is a correct transcript 

on x iff Ga,b,W(a,b,c)=0 for all (a, b, c)  in {0,1}3log S. 
    Ga,b,W(a,b,c)=io(a,b,c)*(Ix(a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a, b, c) * (W(a)-W(b)*W(c)). 

   Proof: A case analysis depending on whether a is an input gate, non-output gate,    
   output addition gate, or output multiplication gate. Exploits non-trivial cancellation     
   for output gates. 
 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Definition of the Key Polynomial 

Gx,W : {0,1}
3logS → F

add(a, b, c)
mult(a, b, c)
io(a, b, c)

(b, c)=(in1(a), in2 (a)) 
(b, c)=(in1(a), in2 (a)) 

a
a

a (b, c)=(0,0),
acb
x

aaxaIx (a)

Gx,W (a, b, c) = 0 (a, b, c) {0,1}3logS.
Gx,W (a, b, c) := io(a, b, c)•(Ix (a)-W(a)) + add(a, b, c)(W(a)-(W(b)+W(c)) + mult(a, b, c) •  (W(a)-W(b)•W(c))

ya



�  Identify a polynomial                                      (that depends on x and Z) such that: 
      Z extends a correct transcript  

�  Let add(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))   and gate    is an addition gate. 
�  Let mult(a,b,c)   output 1 iff (b,c)=(in1(a), in2(a))    and gate     is a mult gate. 
�  Let io(a,b,c)   output 1 iff gate    is in the explicit input x and (b,c)=(0, 0)       
    or if a is an output gate and b and    are in-neighbors of   . 
�  Let Ix(a)  output xa if a is an input gate, ya ifa  is an output gate, and 0 otherwise. 
�  Key Lemma: For Ga,b,W:{0,1}3log S             defined below, W is a correct transcript 

on x iff Ga,b,W(a,b,c)=0 for all (a, b, c)  in {0,1}3log S. 
    Ga,b,W(a,b,c)=io(a,b,c)*(Ix(a)-W(a)) + add(a,b,c)(W(a)-(W(b)+W(c)) + mult(a, b, c) * (W(a)-W(b)*W(c)). 

�  So we define:  
 

gx,Z : {0,1}
3logS → F

gx,Z (a,b,c) = 0 ∀ (a,b,c)∈ {0,1}3logS.⇔

Definition of the Key Polynomial 

Gx,W : {0,1}
3logS → F

add(a, b, c)
mult(a, b, c)
io(a, b, c)

(b, c)=(in1(a), in2 (a)) 
(b, c)=(in1(a), in2 (a)) 

a
a

a (b, c)=(0,0),
acb
x

aaxaIx (a)

Gx,W (a, b, c) = 0 (a, b, c) {0,1}3logS.

gx,Z (a, b, c) = io(a, b, c)•(Ix (a)-Z(a)) + add(a, b, c)(Z(a)-(Z(b)+Z(c)) + mult(a, b, c)•(Z(a)-Z(b)•Z(c))~ ~ ~ ~

Gx,W (a, b, c) := io(a, b, c)•(Ix (a)-W(a)) + add(a, b, c)(W(a)-(W(b)+W(c)) + mult(a, b, c) •  (W(a)-W(b)•W(c))

ya



Costs of the 2-Prover MIP for Non-
Deterministic Circuit Evaluation 

Rounds V Time P1 Time P2 Time 

log S O(n + log2 S) O(S log S) O(S log S) 

Combining this MIP with the RAM        non-deterministic circuit 
reduction sketched before, we get an MIP that can simulate any RAM that 
runs in time T. In the MIP, V runs in time O(n + polylog(T)) and P1  and P2  

run in time O(T*polylog(T)). 

⇒



PCPs 



The PCP Model For A Language L 
�  V is given oracle access to a static proof string    in    . 

�  Standard notions of completeness and soundness must hold. 
�  If x is in L, then there must exist a proof string causing V to accept. 
�  If x is not in L, there for all proof strings, V must reject w.h.p. 

�      is called the length or size of the proof.  
�      is called the alphabet. 
� Prover time refers to the time required to generate    . 
�  If V only looks at q entries of the proof string, then q is referred to as the 

query cost. 

π

ℓ

Σℓ

π
Σ



Relationship Between MIPs and PCPs 
�  Every MIP can be turned into a PCP and vice versa. 

�  But the transformations can blow up costs (e.g., P time, V time, 
communication, query costs, etc.). 



MIP      PCP Transformation 
 

�  Lemma: Suppose L has a   -prover MIP in which V sends one message 
to each prover, with each message consisting of at most     bits, and 
each prover sends at most      bits in response. Then L has a   -query 
PCP over alphabet              with proof size         V’s runtime, 
soundness error and completeness error are the same as in the MIP. 

�  Proof: For each prover Pi in the MIP, the PCP has an entry for every 
possible message to Pi. The PCP verifier simulates the MIP verifier, 
treating the proof string as the provers’ answers in the MIP.      

Σ = [2rA ]

k

rA
rQ

k
k2rQ.

⇒



MIP      PCP Transformation 
 

�  Lemma: Suppose L has a   -prover MIP in which V sends one message 
to each prover, with each message consisting of at most     bits, and 
each prover sends at most      bits in response. Then L has a   -query 
PCP over alphabet              with proof size         V’s runtime, 
soundness error and completeness error are the same as in the MIP. 

�  Proof: For each prover Pi in the MIP, the PCP has an entry for every 
possible message to Pi. The PCP verifier simulates the MIP verifier, 
treating the proof string as the provers’ answers in the MIP.  

�  Highlights a key difference between MIPs and PCPs. 
�   MIP provers only need to compute answers “on demand”. 
� A PCP prover must “write down” an answer to every possible question V might ask.   

   

k

rA
rQ

k
k2rQ.

⇒

Σ = [2rA ]



PCP      MIP Transformation 
 

�  Lemma: Suppose L has a PCP system in which V makes    queries to a 
proof of length    over an alphabet     with soundness error   . Then L 
has a          -prover MIP in which P and V’s runtimes are preserved, 
and the soundness error of the MIP is at most 

�  Proof: For each PCP query     that the PCP verifier makes, the MIP 
verifier poses     to a different prover Pi, then picks            at random 
and poses     to the remaining prover to make sure its answer matches 
that of Pi. 

Highlights the two more key difference between MIPs and PCPs. 

In an MIP, each prover can act adaptively if asked more than one question. 

ven if the provers in an MIP don’t act adaptively, they may not answer with respect to the same function       

k

max{1−1/ k,  δs}.
(k +1)

⇒

ℓ δs

qi
qi i ∈ [k]

qi

Σ



PCP      MIP Transformation 
 

�  Lemma: Suppose L has a PCP system in which V makes    queries to a 
proof of length    over an alphabet     with soundness error   . Then L 
has a          -prover MIP in which P and V’s runtimes are preserved, 
and the soundness error of the MIP is at most 

�  Proof: For each PCP query     that the PCP verifier makes, the MIP 
verifier poses     to a different prover Pi, then picks            at random 
and poses     to the remaining prover to make sure its answer matches 
that of Pi. 

�  Highlights the two more key differences between MIPs and PCPs. 

�  In an MIP, each prover can act adaptively if asked more than one question. 

�  Even if the provers in an MIP don’t act adaptively, they may not answer with respect to the same function       

k

max{1−1/ k,  δs}.
(k +1)

⇒

ℓ δs

qi
qi i ∈ [k]

qi

π.

Σ



A First PCP, From an MIP 
�  In the MIP from earlier, it was sound to work over a field of size 

polylog(S), and V set O(log S) field elements to each prover, where S 
was the size of (non-deterministic) circuit we were simulating. 
�  So total number of bits sent by V was     =O(log(S) * loglog(S))  

 PCP of length O(2   ) = SO(loglog S). 
�  By tweaking parameters in the MIP itself, we can reduce      to O(log S). 

on’t assign gates binary labels and use multilinear extensions over log S variables.  
Instead, assign them labels in base b for b=(log S)/(loglog S), so each label consists of b digits, 
since bb=S.  
Can use extensions of degree b in each variable. 
till sound to work over a field F of size polylog(S). 
o        becomes O(b *log|F|)=O( (log S)/(loglog S)*loglog S) = O(log S)              

             PCP of size poly(S). 

⇒

rQ
rQ

rQ



A First PCP, From an MIP 
�  In the MIP from earlier, it was sound to work over a field of size 

polylog(S), and V set O(log S) field elements to each prover, where S 
was the size of (non-deterministic) circuit we were simulating. 
�  So total number of bits sent by V was     =O(log(S) * loglog(S))  

 PCP of length O(2   ) = SO(loglog S). 
�  By tweaking parameters in the MIP itself, we can reduce      to O(log S). 

�  Don’t assign gates binary labels and use multilinear extensions over log S variables.  
�  Instead, assign them labels in base b for b=(log S)/(loglog S), so each label consists of b 

digits, since bb=S.  
�  Can use extensions of degree b in each variable, so it is still sound to work over a field F of 

size polylog(S). 
�  So        becomes O(b *log|F|)=O( (log S)/(loglog S)*loglog S) = O(log S)              

             PCP of size poly(S). 

⇒

rQ

rQ

rQ
⇒

rQ



A State of the Art PCP 
�  [BSS 2005]: A PCP for simulating a RAM M running in time T, with 

proof length O(T*polylog(T)) and O(polylog(T)) queries by V. 
�  [BSGHSV 2005]: Reduced V’s time in the PCP to O(n*polylog(T)) 
�  [BSCGT 2013]: Improved constants, and showed how to generate the 

proof in time O(T*polylog(T)) using FFTs. 
�  Still complicated, large hidden constants, must work over fields of 

characteristic 2. 



Argument Systems 



Argument Systems 
�  Argument systems are constructed in a 2-step process: 

1.  Construct an information-theoretically secure protocol for a model in 
which cheating provers behave in a restricted model. 

2.  Use crypto to force a single prover to behave in this model. 



Information-Theoretically 
Secure Model 

Crypto Primitive Argument System Properties Reference 

Polynomial size PCP CRHF 4-message argument for NP 
Zero-Knowledge (ZK) 

Proof of Knowledge (PoK) 

Kilian 1992 

“linear” PCP of exponential 
size 

Additively 
homomorphic 

encryption 

Same as above, but  
with pre-processing 

(also, simpler w/better constants) 

IKO 2007, 
GGPR 
2013 

 
------------------------------- 

“linear only” 
additively 

homomorphic 
encryption 

2-message argument for NP 
with pre-processing 

ZK+PoK+public verifiability 

GGPR 
2013, 

BCIOP 
2013  

MIP Fully-Homomorphic 
Encryption (FHE) 

4-message “complexity-
preserving” argument for NP 

with PoK 

Bitansky-
Chiesa 
2012 

No-signaling MIP FHE or PRI 2-message argument for P 
Publicly verifiable [PR15] 

KRR 2014 

Argument Systems and Their Properties 



Kilian’s Argument System 



Merkle Trees 
�  A Merkle Hash Tree gives a way to outsource storage of a bunch of data to an 

untrusted “prover” P.  
�  Fix a collision resistant hash function                                              .  The prover 

uses h to build a hash tree over the data. 
�  Suppose V knows the root hash. 
If V wants to know a data block, she asks P  
    to provide the data block, and all nodes on  

   its path to the root, and their siblings. 
alled the witness path for the data block. 

 checks that all provided nodes actually 
    equal the hash of the children, and the claimed root hash is correct. 
or P to lie about the value of the data block, there must be a hash-collision somewhere 
on the real root-to-leaf path and the claimed root-to-leaf path. 

Figure 8: A hash tree. Image source: http://commons.wikimedia.org/wiki/File:Hash_tree.png

4.1 Interactive Argument Systems from PCPs

Kilian [Kil92] (see also Micali [Mic00]) showed that any PCP can be combined with Merkle-hashing tech-
niques to yield four-message argument systems for all of NP, assuming that collision-resistant hash function
exist. The prover and verifier runtimes are the same as in the underlying PCP, up to low-order factors, and the
total communication cost is just O(log2 n) per PCP query, assuming an exponentially hard collision-resistant
hash function.

The idea is the following. The difference between a PCP and an interactive proof is that, in an interactive
proof, the prover can behave adaptively, allowing the response to some queries to depend on other queries
that have been asked. Whereas non-adaptivity is baked into the very definition of a PCP, as the PCP proof
is fixed before the verifier asks any queries; this difference is the reason that PCPs are more expressive
than interactive proofs. In order to get argument systems that inherit the expressiveness of PCPs, Kilian’s
idea is to combine a PCP with collision-resistant hashing to force non-adaptivity upon any (computationally
bounded) prover.

At the start of the argument, the prover builds the PCP proof p , but does not send it in full to the
verifier. Rather, the verifier sends a description of a collision resistant hash function h to the prover, and
the prover used h to compute a short message to V which effectively commits P to p . V then simulates the
PCP verifier, sending the necessary queries q1, . . . ,qk to P . P then executes a “reveal” step, sending the
answers p(q1), . . . ,p(qk) to V , along with a short proof that the answers are all consistent with his initial
“commitment.”

The commitment step uses a binary hash tree, also known as a Merkle-tree [Mer79], defined via the
collision-resistant hash function h sent by the verifier. In a hash tree, the leaves are hashes of data blocks,
and every internal node of the tree is assigned the hash of its two children. Figure 8 provides a visual
depiction of a hash tree. The data blocks that the prover uses to build the hash tree are the entries of the PCP
proof p itself.

In the commitment step, P commits to the proof string p be sending the root of the hash-tree (this is
just O(logn) bits assuming an exponentially hard collision-resistant hash function). In the reveal step, P
proves that each answer p(qi) is consistent with the commitment by sending to V every node v along the
root-to-leaf path for qi, as well as the sibling of v. Since the tree has depth O(log |p|), this is just O(log2 n)
bits of communication per PCP query, if |p|= poly(n).

45

h : {0,1}k ×{0,1}k → {0,1}k



Merkle Trees 
�  A Merkle Hash Tree gives a way to outsource storage of a bunch of data to an 

untrusted “prover” P.  
�  Fix a collision resistant hash function                                              .  The prover 

uses h to build a hash tree over the data. 
�  Suppose V knows the root hash. 
�  If  V wants to know a data block, she asks P  
    to provide the data block, and all nodes on  

   its path to the root, along with their siblings. 
�  Called the witness path for the data block. 

�  V checks that all provided nodes actually 
    equal the hash of the children, and that the claimed root hash is correct. 
�  For P to lie about the value of the data block, there must be a hash-collision 

somewhere on the real root-to-leaf path and the claimed root-to-leaf path. 

Figure 8: A hash tree. Image source: http://commons.wikimedia.org/wiki/File:Hash_tree.png

4.1 Interactive Argument Systems from PCPs

Kilian [Kil92] (see also Micali [Mic00]) showed that any PCP can be combined with Merkle-hashing tech-
niques to yield four-message argument systems for all of NP, assuming that collision-resistant hash function
exist. The prover and verifier runtimes are the same as in the underlying PCP, up to low-order factors, and the
total communication cost is just O(log2 n) per PCP query, assuming an exponentially hard collision-resistant
hash function.

The idea is the following. The difference between a PCP and an interactive proof is that, in an interactive
proof, the prover can behave adaptively, allowing the response to some queries to depend on other queries
that have been asked. Whereas non-adaptivity is baked into the very definition of a PCP, as the PCP proof
is fixed before the verifier asks any queries; this difference is the reason that PCPs are more expressive
than interactive proofs. In order to get argument systems that inherit the expressiveness of PCPs, Kilian’s
idea is to combine a PCP with collision-resistant hashing to force non-adaptivity upon any (computationally
bounded) prover.

At the start of the argument, the prover builds the PCP proof p , but does not send it in full to the
verifier. Rather, the verifier sends a description of a collision resistant hash function h to the prover, and
the prover used h to compute a short message to V which effectively commits P to p . V then simulates the
PCP verifier, sending the necessary queries q1, . . . ,qk to P . P then executes a “reveal” step, sending the
answers p(q1), . . . ,p(qk) to V , along with a short proof that the answers are all consistent with his initial
“commitment.”

The commitment step uses a binary hash tree, also known as a Merkle-tree [Mer79], defined via the
collision-resistant hash function h sent by the verifier. In a hash tree, the leaves are hashes of data blocks,
and every internal node of the tree is assigned the hash of its two children. Figure 8 provides a visual
depiction of a hash tree. The data blocks that the prover uses to build the hash tree are the entries of the PCP
proof p itself.

In the commitment step, P commits to the proof string p be sending the root of the hash-tree (this is
just O(logn) bits assuming an exponentially hard collision-resistant hash function). In the reveal step, P
proves that each answer p(qi) is consistent with the commitment by sending to V every node v along the
root-to-leaf path for qi, as well as the sibling of v. Since the tree has depth O(log |p|), this is just O(log2 n)
bits of communication per PCP query, if |p|= poly(n).

45

h : {0,1}k ×{0,1}k → {0,1}k



Kilian’s Argument System 
�  Combine a PCP with a Merkle tree. 
�  In more detail: 

1.  Commit Phase of the Argument System: 
V sends a collision-resistant hash function h to P. 
et     be a PCP attesting to             P builds a Merkle tree over     using h and sends the 
root hash to V. 

2.  Reveal Phase of the Argument System: 
Let                be the PCP verifier’s queries to    . V sends these queries to P.  
 sends back                              plus the witness path for each. 

Soundness proof sketch: By security of the Merkle Tree, after the reveal phase P 
is “committed” to answer all k queries in the Reveal Phase using a single, fixed 
function   . Hence, by soundness of the PCP, if P can convince V to accept with 
non-negligible probability, then  



Kilian’s Argument System 
�  Combine a PCP with a Merkle tree. 
�  In more detail: 

1.  Commit Phase of the Argument System: 
�  V sends a collision-resistant hash function h to P. 
�  Let     be a PCP attesting to             P builds a Merkle tree over     using h and sends 

the root hash to V. 

2.  Reveal Phase of the Argument System: 
�  Let                be the PCP verifier’s queries to    . V sends these queries to P.  
�  P sends back                              plus the witness path for each. 

Soundness proof sketch: By security of the Merkle Tree, after the reveal phase P 
is “committed” to answer all k queries in the Reveal Phase using a single, fixed 
function   . Hence, by soundness of the PCP, if P can convince V to accept with 
non-negligible probability, then  

π x ∈ L. π

q1,...,qk π
π (q1),...,π (qk )



Kilian’s Argument System 
�  Combine a PCP with a Merkle tree. 
�  In more detail: 

1.  Commit Phase of the Argument System: 
�  V sends a collision-resistant hash function h to P. 
�  Let     be a PCP attesting to             P builds a Merkle tree over     using h and sends 

the root hash to V. 

2.  Reveal Phase of the Argument System: 
�  Let                be the PCP verifier’s queries to    . V sends these queries to P.  
�  P sends back                              plus the witness path for each. 

�  Soundness proof sketch: By security of the Merkle Tree, after the reveal phase 
P is “committed” to answer all k queries in the Reveal Phase using a single, 
fixed function   . Hence, by soundness of the PCP, if P can convince V to 
accept with non-negligible probability, then  

π x ∈ L.

q1,...,qk π
π (q1),...,π (qk )

π
x ∈ L.

π



Costs of Kilian’s Argument System 
When Instantiated with State-Of-The-Art PCP 

for Non-Deterministic Circuit Evaluation 

Messages Communication V Time P Time 

4 polylog(S) O(n + polylog S) O(S*polylog S) 

Downsides: 
*State-of-the-art PCPs are complicated, concretely expensive. 
*The argument system is interactive, not publicly verifiable (though it can be made ZK and PoK). 
*State-of-the-art PCPs require a lot of space for the prover (who must perform FFTs over entire 
  computation traces). 



Argument Systems from Linear PCPs 
[Ishai, Kushilevitz, Ostrovsky, 2008] 



Interactive Arguments from Linear PCPs 
�  The reason Kilian needs a polynomial-size PCP is that the prover 

must materialize the full proof     to commit to it. 
�  Can avoid this if      is structured (i.e., linear).  

�  i.e.,                       and   

�  Step 1: Give commit/reveal protocol for linear functions 
�  Will use a semantically secure additively homomorphic encryption scheme. 
�  i.e. Enc(            )=Enc(    ) + Enc(    ). 

�  Step 2: Give a linear PCP for non-deterministic circuit evaluation. 
�  First, we give one of length                 due to [IKO, 2007]. 
�  Then, we give one of length               due to [GGPR, 2013]. 

π
π

π :Fv → F π (q1 + q2 ) = π (q1)+π (q2 ).
π :Fv → F.

|F |O(S
2 )

|F |O(S )

q1 + q2 q1 q2



�  The reason Kilian needs a polynomial-size PCP is that the prover 
must materialize the full proof     to commit to it. 

�  Can avoid this if      is structured (i.e., linear).  
�  i.e.,                       and   

�  Step 1: Give commit/reveal protocol for linear functions 
�  Will use a semantically secure additively homomorphic encryption scheme. 
�  i.e. Enc(            )=Enc(    ) + Enc(    ). 

�  Step 2: Give a linear PCP for non-deterministic circuit evaluation. 
�  First, we give one of length                 due to [IKO, 2007]. 
�  Then, we give one of length               due to [GGPR, 2013]. 

π
π :Fv → F π (q1 + q2 ) = π (q1)+π (q2 ).

π :Fv → F.

q1 + q2 q1 q2

|F |O(S
2 )

|F |O(S )
Costs of Resulting 
Argument System 

Interactive Arguments from Linear PCPs 

π



�  The reason Kilian needs a polynomial-size PCP is that the prover 
must materialize the full proof     to commit to it. 

�  Can avoid this if      is structured (i.e., linear).  
�  i.e.,                       and   

�  Step 1: Give commit/reveal protocol for linear functions 
�  Will use a semantically secure additively homomorphic encryption scheme. 
�  i.e. Enc(            )=Enc(    ) + Enc(    ). 

�  Step 2: Give a linear PCP for non-deterministic circuit evaluation. 
�  First, we give one of length                 due to [IKO, 2007]. 
�  Then, we give one of length               due to [GGPR, 2013]. 

π
π :Fv → F π (q1 + q2 ) = π (q1)+π (q2 ).

π :Fv → F.

q1 + q2 q1 q2

|F |O(S
2 )

|F |O(S )
Costs of Resulting 
Argument System 

Interactive Arguments from Linear PCPs 

Messages Communication V Time P Time 

4 V      P communication: O(S) field elements 
P       V communication: O(1) field elements 

 
 

O(S), but amortizable 
over a batch of inputs to C 

O(S *log2 S) →
→

π



Step 1: Commit/Reveal For Linear Functions  
�  Guarantee: At end of commit phase, there is some function       (not 

necessarily linear) such that if P passes V’s test with non-negligible 
probability, then answers in the reveal phase are consistent with 

�  Commit phase:  
 chooses a random           , sends Enc(   ),…, Enc(   )  to P. 
P sends e=Enc(       ) to V using homomorphism of Enc. 
 lets s=Dec(e). 

�  Reveal phase: 
Given queries               to     , V picks               at random, sends  
   and                             to P. 
P sends claimed answers                     to the queries. 
V checks if                    

π '

π '.

π :Fv → F



�  Guarantee: At end of commit phase, there is some function       (not 
necessarily linear) such that if P passes V’s test with non-negligible 
probability, then answers in the reveal phase are consistent with 

�  Commit phase:  
� V chooses a random           , sends Enc(   ),…, Enc(   )  to P. 
�  P sends e=Enc(       ) to V using homomorphism of Enc. 
� V lets s=Dec(e). 

�  Reveal phase: 
� Given queries               to     , V picks               at random, sends  
   and                             to P. 
�  P sends claimed answers                     to the queries. 
� V checks if                    

π '

π '.

r ∈ Fv r1 rv
π (r)

q1 ,...,qk π α1,...,αk q1 ,...,qk
q* := r + αiqii∑

a1 ,...,ak,a*
a*= s+ αiai.i∑

Step 1: Commit/Reveal For Linear Functions  π :Fv → F



Step 1: Commit/Reveal For Linear Functions  
!  Guarantee: At end of commit phase, there is some function       (not 

necessarily linear) such that if P passes V’s test with non-negligible 
probability, then answers in the reveal phase are consistent with 

!  Commit phase:  
! V chooses a random           , sends Enc(   ),…, Enc(   )  to P. 
!  P sends e=Enc(       ) to V using homomorphism of Enc. 
! V lets s=Dec(e). 

!  Reveal phase: 
! Given queries               to     , V picks               at random, sends  
   and                            to P. 
!  P sends claimed answers                     to the queries. 
! V checks if                    

π '

π '.

π

r ∈ Fv r1 rv
π (r)

q1 ,...,qk π α1,...,αk q1 ,...,qk
q* := r + αiqii∑

a1 ,...,ak,a*
a*= s+ αiai.i∑



�  Proof of Binding:  
�  Assume the number of queries V asks in reveal phase is k=1 for simplicity.  
�  Consider two runs of the reveal phase, where: 

�  In Run 1, V sends      and                       and P responds with      and     . 
�  In Run 2, V sends      and                          and  P responds with                and      .  
�  And V accepts both runs. 

�  Claim: In this case, P can solve for              . Hence, P can solve for r, breaking 
semantic security of the encryption scheme. 

                                                
                                                                 
                                           

                                 
                                                                                             

q1 q* := r +αq1 a1 a
a1 ≠ a1 a

Step 1: Commit/Reveal For Linear Functions  
!  Guarantee: At end of commit phase, there is some function       (not 

necessarily linear) such that if P passes V’s test with non-negligible 
probability, then answers in the reveal phase are consistent with 

!  Commit phase:  
! V chooses a random           , sends Enc(   ),…, Enc(   )  to P. 
!  P sends e=Enc(       ) to V using homomorphism of Enc. 
! V lets s=Dec(e). 

!  Reveal phase: 
! Given queries               to     , V picks               at random, sends  
   and                            to P. 
!  P sends claimed answers                     to the queries. 
! V checks if                    

π '

π '.

π

r ∈ Fv r1 rv
π (r)

q1 ,...,qk π α1,...,αk q1 ,...,qk
q* := r + αiqii∑

a1 ,...,ak,a*
a*= s+ αiai.i∑

*
*’              ’              

(α,α  )’              

q* := r +α  q1’              q1 ’              



�  Proof of Binding:  
�  Assume the number of queries V asks in reveal phase is k=1 for simplicity.  
�  Consider two runs of the reveal phase, where: 

�  In Run 1, V sends      and                       and P responds with      and     . 
�  In Run 2, V sends      and                          and  P responds with                and      .  
�  And V accepts both runs. 

�  Claim: In this case, P can solve for              . Hence, P can solve for r, breaking 
semantic security of the encryption scheme. 

�  Proof: Even though P doesn’t know s, P knows by V’s acceptance that 
 

                                                
                                                                 
                                           

                                 
                                                                                             

a
q* := r +α  q1 a

Step 1: Commit/Reveal For Linear Functions  
!  Guarantee: At end of commit phase, there is some function       (not 

necessarily linear) such that if P passes V’s test with non-negligible 
probability, then answers in the reveal phase are consistent with 

!  Commit phase:  
! V chooses a random           , sends Enc(   ),…, Enc(   )  to P. 
!  P sends e=Enc(       ) to V using homomorphism of Enc. 
! V lets s=Dec(e). 

!  Reveal phase: 
! Given queries               to     , V picks               at random, sends  
   and                            to P. 
!  P sends claimed answers                     to the queries. 
! V checks if                    

π '

π '.

π

r ∈ Fv r1 rv
π (r)

q1 ,...,qk π α1,...,αk q1 ,...,qk
q* := r + αiqii∑

a1 ,...,ak,a*
a*= s+ αiai.i∑

*
*’              ’              q1 ’              

(α,α  )’              

a = s+αa1

a  = s+α  a1

*
*

⇒
’              ’              

q1 q* := r +αq1

’              

a1
a1 ≠ a1’              

(a − a  ) =αa1 −α  a1
* * ’              ’              ’              



�  Proof of Binding:  
�  Assume the number of queries V asks in reveal phase is k=1 for simplicity.  
�  Consider two runs of the reveal phase, where: 

�  In Run 1, V sends      and                       and P responds with      and     . 
�  In Run 2, V sends      and                          and  P responds with                and      .  
�  And V accepts both runs. 

�  Claim: In this case, P can solve for              . Hence, P can solve for r, breaking 
semantic security of the encryption scheme. 

�  Proof: Even though P doesn’t know s, P knows by V’s acceptance that 
 

                                                
                                                                 
                                           

                                 
                                                                                             

a
a

Step 1: Commit/Reveal For Linear Functions  
!  Guarantee: At end of commit phase, there is some function       (not 

necessarily linear) such that if P passes V’s test with non-negligible 
probability, then answers in the reveal phase are consistent with 

!  Commit phase:  
! V chooses a random           , sends Enc(   ),…, Enc(   )  to P. 
!  P sends e=Enc(       ) to V using homomorphism of Enc. 
! V lets s=Dec(e). 

!  Reveal phase: 
! Given queries               to     , V picks               at random, sends  
   and                            to P. 
!  P sends claimed answers                     to the queries. 
! V checks if                    

π '

π '.

π

r ∈ Fv r1 rv
π (r)

q1 ,...,qk π α1,...,αk q1 ,...,qk
q* := r + αiqii∑

a1 ,...,ak,a*
a*= s+ αiai.i∑

*
*’              

(α,α  )’              

q*  = r +αq1

q* = r +α  q1’              ⇒ (q*  − q*   ) =αq1 −α  q1’              
(Equality of Vectors) 

 Also, P doesn’t know r, but he knows:  

q1 q* := r +αq1
q* := r +α  q1’              q1 ’              

a = s+αa1

a  = s+α  a1

*
*

⇒
’              ’              ’              

’              
’              

a1
a1 ≠ a1’              

(a − a  ) =αa1 −α  a1
* * ’              ’              ’              



�  Proof of Binding:  
�  Assume the number of queries V asks in reveal phase is k=1 for simplicity.  
�  Consider two runs of the reveal phase, where: 

�  In Run 1, V sends      and                       and P responds with      and     . 
�  In Run 2, V sends      and                          and  P responds with                and      .  
�  And V accepts both runs. 

�  Claim: In this case, P can solve for              . Hence, P can solve for r, breaking 
semantic security of the encryption scheme. 

�  Proof: Even though P doesn’t know s, P knows by V’s acceptance that 
 

                                                
                                                                 
                                           

                                 
                                                                                             

a
a

Step 1: Commit/Reveal For Linear Functions  
!  Guarantee: At end of commit phase, there is some function       (not 

necessarily linear) such that if P passes V’s test with non-negligible 
probability, then answers in the reveal phase are consistent with 

!  Commit phase:  
! V chooses a random           , sends Enc(   ),…, Enc(   )  to P. 
!  P sends e=Enc(       ) to V using homomorphism of Enc. 
! V lets s=Dec(e). 

!  Reveal phase: 
! Given queries               to     , V picks               at random, sends  
   and                            to P. 
!  P sends claimed answers                     to the queries. 
! V checks if                    

π '

π '.

π

r ∈ Fv r1 rv
π (r)

q1 ,...,qk π α1,...,αk q1 ,...,qk
q* := r + αiqii∑

a1 ,...,ak,a*
a*= s+ αiai.i∑

*
*’              

(α,α  )’              

 Also, P doesn’t know r, but he knows:  

q1 q* := r +αq1

q1, j ≠ 0.
(qj  − qj   ) = (α −α  )q1’              

Pick any j s.t.                Then: 

q* := r +α  q1’              q1 ’              

a = s+αa1

a  = s+α  a1

*
*

⇒
’              ’              ’              

a1
a1 ≠ a1’              

q*  = r +αq1

q* = r +α  q1’              ⇒ (q*  − q*   ) =αq1 −α  q1’              
(Equality of Vectors) ’              

’              
’              * *

(a − a  ) =αa1 −α  a1
* * ’              ’              ’              



�  Proof of Binding:  
�  Assume the number of queries V asks in reveal phase is k=1 for simplicity.  
�  Consider two runs of the reveal phase, where: 

�  In Run 1, V sends      and                       and P responds with      and     . 
�  In Run 2, V sends      and                          and  P responds with                and      .  
�  And V accepts both runs. 

�  Claim: In this case, P can solve for              . Hence, P can solve for r, breaking 
semantic security of the encryption scheme. 

�  Proof: Even though P doesn’t know s, P knows by V’s acceptance that 
 

                                                
                                                                 
                                           

                                 
                                                                                             

a
a

Step 1: Commit/Reveal For Linear Functions  
!  Guarantee: At end of commit phase, there is some function       (not 

necessarily linear) such that if P passes V’s test with non-negligible 
probability, then answers in the reveal phase are consistent with 

!  Commit phase:  
! V chooses a random           , sends Enc(   ),…, Enc(   )  to P. 
!  P sends e=Enc(       ) to V using homomorphism of Enc. 
! V lets s=Dec(e). 

!  Reveal phase: 
! Given queries               to     , V picks               at random, sends  
   and                            to P. 
!  P sends claimed answers                     to the queries. 
! V checks if                    

π '

π '.

π

r ∈ Fv r1 rv
π (r)

q1 ,...,qk π α1,...,αk q1 ,...,qk
q* := r + αiqii∑

a1 ,...,ak,a*
a*= s+ αiai.i∑

*
*’              

(α,α  )’              

 Also, P doesn’t know r, but he knows:  

q1 q* := r +αq1

q1, j ≠ 0.
(qj  − qj   ) = (α −α  )q1’              

Pick any j s.t.                Then: 

q* := r +α  q1’              q1 ’              

a = s+αa1

a  = s+α  a1

*
*

⇒ (a − a  ) =αa1 −α  a1
* * ’              ’              

’              ’              ’              
’              

a1
a1 ≠ a1’              

q*  = r +αq1

q* = r +α  q1’              ⇒ (q*  − q*   ) =αq1 −α  q1’              
(Equality of Vectors) ’              

’              
’              * *

Since               , P has two linearly independent equations in two unknowns, so P can solve for       a1 ≠ a1 (α,α  )’              ’              



�  Fix a circuit C taking explicit input x and non-deterministic input w, 
with claimed outputs y.  

�  Call a vector             a transcript for C. 
�  Say     is a correct transcript for input x if: 

�                        for all input gates 
�                       for all output gates 
�                                                 for all addition gates 
�                                                 for all multiplication gates 

� Note: S + 1 – w constraints in total. 2 for the output gate, 0 for non-
deterministic witness gates, and 1 for all others. 

� Note: All constraints are of the form                  for a polynomial       of 
degree at most 2 in the entries of    

W ∈ FS

W
Wa − xa = 0 a.
Wa − ya = 0 a.
Wa − (Win1(a)

+Win2 (a)
) = 0 a.

Wa − (Win1(a)
•Win2 (a)

) = 0 a.

Qi (W ) = 0 Qi

W.

Step 2: A Linear PCP For Non-Deterministic Circuit Evaluation of Size  
 

|F |O(S
2 )



�  Let                      be the vector whose (i,j)’th entry equals 
�  Define                                as the concatenation of     and  
�  For any vector             define      

�  The set of all          evaluations of       is called the Hadamard encoding of   

W ⊗W ∈ FS2 Wi •Wj.
(W,W ⊗W )∈ FS+S2 W ⊗W.W

d ∈ Fv, π d :Fv → F via π d (x) = 〈x,d〉.
π d|F |v d.

Step 2: A Linear PCP For Non-Deterministic Circuit Evaluation of Size  
 

|F |O(S
2 )



Step 2: A Linear PCP For Non-Deterministic Circuit Evaluation of Size  
 

�  Let                      be the vector whose (i,j)’th entry equals 
�  Define                                as the concatenation of     and  
�  For any vector             define      

�  The set of all          evaluations of       is called the Hadamard encoding of  

�  Honest proof     contains all evaluations of the function 
�  V must check: 

1.       is linear. 
2.  Assuming 1. holds, that    is of the form               for some         
3.  Assuming 1. and 2. hold, that      also satisfies all constraints required 

for      to be a valid transcript.     

W ⊗W ∈ FS2

(W,W ⊗W )∈ FS+S2 W ⊗W.W
d ∈ Fv,

π π (W ,W⊗W ).

π π (W ,W⊗W ) W.
W

π

|F |v d.

W

π d :Fv → F via π d (x) = 〈x,d〉.

Wi •Wj.

π d

|F |O(S
2 )



Checking 1: Linearity Testing  

�  V picks                     at random, and checks that   
�  [Blum, Luby, Rubinfeld, 1993]: Over a field of characteristic 2, if this test 
    passes with probability     then there exists a linear function     such that 
                      for a   -fraction of inputs   
� Over other fields, weaker guarantees are known. 

�  From now on, let us assume for simplicity that if    passes the 
linearity test, then    is actually linear.  

q1,q2 ∈ F
S+S2 π (q1)+π (q2 ) = π (q1 + q2 ).

δ π '
π '(x) = π (x) δ x.

π
π



Checking 2: Assuming    is Linear, Check That it is of the 
Form                for some W. 

�  Since     is linear,                         for some 
�  To check that                              for some       V picks                  at random. 

�  Let                    
�  Let 
�  Let 

�  V checks that 
�  Proof of completeness of this check: 

�  If                              then the check will pass because: 
   

π
π (W ,W⊗W )

π π = π d = 〈•,d〉 d.
d = (W,W ⊗W ) W, q ',q ''∈ FS

a = (q ', 0),  0 ∈ FS2

.→ →

c = (0,q '⊗ q ''),   0 ∈ FS2

.→ →

π (a)•π (b) = π (c).

d = (W,W ⊗W )

π (a) = 〈W,q '〉 and π (b) = 〈W,q ''〉,  so  π (a)•π (b) = WiqiWjqj
j=1

s

∑
i=1

s

∑ ' ' '

while π (c) = WiWjqi qj
j=1

s

∑
i=1

s

∑ .' ' '

b = (q '', 0),  0 ∈ FS2

.→ →



Checking 2: Assuming    is Linear, Check That it is of the 
Form                for some W. 

�  Since     is linear,                         for some 
�  To check that                              for some       V picks                  at random. 

�  Let                    
�  Let 
�  Let 

�  V checks that 
�  Proof of soundness of this check: 

�  If                              for any      then                                    are both 
multilinear polynomials in the entries of                   and these 
polynomials are not equal.          

�  So Schwartz-Zippel implies that the test will fail with probability at least          

π

π d.
d = (W,W ⊗W ) W, q ',q ''∈ FS

a = (q ', 0),  0 ∈ FS2

.→ →

b = (q '', 0),  0 ∈ FS2

.→

c = (0,q '⊗ q ''),   0 ∈ FS2

.→ →

π (a)•π (b) = π (c).

d ≠ (W,W ⊗W )

' ' '

W, π (a)•π (b) and π (c)
q '  and q '',

1− 2S/ |F | .

π = π d = 〈•,d〉

π (W ,W⊗W )

→



Checking 3: Assuming                         Check That     a   
Satisfies All Constraints Required By A Valid Transcript. 

�  V needs to check that                  for all constraints 
�  V picks                 at random from    and checks whether 

�  Completeness of this step is obvious (if W satisfies all constraints, the test 
will pass).  

�  Proof of Soundness:  If W does not satisfy all constraints, then 
    is a degree 1 polynomial in the       , so by Schwartz-Zippel,   
                         with probability at least                 over the random choice  
      of the 

π = π (W ,W⊗W ), W

Qi (W ) = 0 i.
α1,α2,... F αiQi (W ) = 0.

i
∑

This is a degree 2 polynomial in the entries of     , 
i.e., a linear combination of the entries 
of                        . So it can be evaluated with a  
single query to     

W

(W,W ⊗W )

αiQi (W )
i
∑

αi's
αiQi (W )

i
∑ ≠ 0 1−1/ |F |

αi's.

π = π (W ,W⊗W ).



A Linear PCP of Size |F|O(S) 
[Gennaro, Gentry, Parno, Raykova, 2013] 



A Linear PCP For Non-Deterministic Circuit Evaluation of Size  
AKA Quadratic Arithmetic Programs (QAPs) 
 
�  Same setup as [IKO 2007]. Recall: 

�  Fix a circuit C taking explicit input x and non-deterministic input w, with claimed outputs y. 
�  Call a vector               a transcript for C. 

�  Say     is a correct transcript for input x if: 
�                      for all input gates 
�                     for all output gates 
�                                         for all addition gates 
�                                           for all multiplication gates 

n all cases, constraint is of the form: 

    for some linear functions 
Next two slides are devoted to the following goals.  

Given any transcript       identify a polynomial               such that 

velop an efficient proof that 

|F |O (S )

W ∈ FS

W
Wa − xa = 0 a.
Wa − ya = 0 a.

a.
a.

Wa − (Win1(a)
+Win2 (a)

) = 0
Wa − (Win1(a)

•Win2 (a)
) = 0



A Linear PCP For Non-Deterministic Circuit Evaluation of Size  
AKA Quadratic Arithmetic Programs (QAPs) 
 
�  Same setup as [IKO 2007]. Recall: 

�  Fix a circuit C taking explicit input x and non-deterministic input w, with claimed outputs y. 
�  Call a vector               a transcript for C. 

�  Say     is a correct transcript for input x if: 
�                      for all input gates 
�                     for all output gates 
�                                         for all addition gates 
�                                           for all multiplication gates 

�  In all cases, constraint is of the form: 

    for some linear functions 
�  Next two slides are devoted to the following goals.  

�  Given any transcript         identify a polynomial               such that 

�  Develop an efficient proof that 

|F |O (S )

f1,i (W )• f2,i (W )− f3,i (W ) = 0
f1,i (W ), f2,i (W ),  and f3,i (W ).

W,
W  satisfies all constraints ⇔ gx,W (t) vanishes on H.

gx,W (t)

gx,W (t) vanishes on H.

W ∈ FS

W
Wa − xa = 0 a.
Wa − ya = 0 a.

a.
a.

Wa − (Win1(a)
+Win2 (a)

) = 0
Wa − (Win1(a)

•Win2 (a)
) = 0



�  Let                           be an arbitrary set of distinct values in 

�  Lemma (**): Let                             Let        be any univariate polynomial  

   of degree d over      Then:     
In al 
 
 

Similarly, define 3 final polynomials 
    of degree m-1 through interpolation:  

|F |O (S )

H = {σ1,...,σ m} F.

hH (t) = (t −σ i )
i=1

m

∏ . g(t)

F.

g(σ i ) = 0 for all σ i ∈ H

∃ a polynomial h of degree at most d −m such that g(t) = hH (t)•h(t).
⇔

A Linear PCP For Non-Deterministic Circuit Evaluation of Size  
AKA Quadratic Arithmetic Programs (QAPs) 
 

**



�  Recall: Constraint i is of the form: 

�  For each gate    in C, define three univariate polynomials 
   of degree m-1 through interpolation:  

 

�  Similarly, define 3 final polynomials of degree m-1 through interpolation:  

|F |O (S )

Aa,Ba,  and Ca

Aa (σ i ) = coefficient of Wa  in f1,i.
Ba (σ i ) = coefficient of Wa  in f2,i.
Ca (σ i ) = coefficient of Wa  in f3,i.

Aa (σ i ) = constant coefficient in f1,i.

A Linear PCP For Non-Deterministic Circuit Evaluation of Size  
AKA Quadratic Arithmetic Programs (QAPs) 
 

'
'
'

a

f1,i (W )• f2,i (W )− f3,i (W ) = 0.

Ba (σ i ) = constant coefficient in f2,i.
Ca (σ i ) = constant coefficient in f3,i.



�  Recall: Constraint i is of the form: 
 
Define: 

Then:  n al 
 

Aa (σ i ) = coefficient of Wa  in f1,i.
Ba (σ i ) = coefficient of Wa  in f2,i.
Ca (σ i ) = coefficient of Wa  in f3,i.

f1,i (W )• f2,i (W )− f3,i (W ) = 0.

Aa (σ i ) = constant coefficient in f1,i.'
'
'

Ba (σ i ) = constant coefficient in f2,i.
Ca (σ i ) = constant coefficient in f3,i.



�  Recall: Constraint i is of the form: 
 
�  Define: 

�  Then:  n al 
 

Aa (σ i ) = coefficient of Wa  in f1,i.
Ba (σ i ) = coefficient of Wa  in f2,i.
Ca (σ i ) = coefficient of Wa  in f3,i.

gx,W (t) =(( Wa •Aa (t
gates a
∑ ))+ A '(t))•(( Wa •Ba (t

gates a
∑ ))+B '(t))−(( Wa •Ca (t

gates a
∑ ))+C '(t))

f1,i (W )• f2,i (W )− f3,i (W ) = 0.

(Key Condition) :   gx,W (t) = hH (t)•h(t) for some h of degree at most S.
W  satisfies all constraints ⇔ gx,W (t) vanishes on H⇔

**

Lemma (**)

Aa (σ i ) = constant coefficient in f1,i.'
'
'

Ba (σ i ) = constant coefficient in f2,i.
Ca (σ i ) = constant coefficient in f3,i.



� Define: 

� Then:  n al 
 
 
To check (Key Condition), it suffices for V to pick a random 
    and check that 
efine honest proof   

gx,W (t) =(( Wa •Aa (t
gates a
∑ ))+ A '(t))•(( Wa •Ba (t

gates a
∑ ))+B '(t))−(( Wa •Ca (t

gates a
∑ ))+C '(t))

W  satisfies all constraints ⇔ gx,W (t) vanishes on H⇔

(Key Condition) :   gx,W (t) = hH (t)•h(t) for some h of degree at most S.**



� Define: 

� Then:  n al 
 
 
� To check (Key Condition), it suffices for V to pick a random 
    and check that 
Define honest proof   

r ∈ F
gx,W (r) = hH (r)•h(r).

gx,W (t) =(( Wa •Aa (t
gates a
∑ ))+ A '(t))•(( Wa •Ba (t

gates a
∑ ))+B '(t))−(( Wa •Ca (t

gates a
∑ ))+C '(t))

W  satisfies all constraints ⇔ gx,W (t) vanishes on H⇔

(Key Condition) :   gx,W (t) = hH (t)•h(t) for some h of degree at most S.**

*



� Define: 

� Then:  n al 
 
 
� To check (Key Condition), it suffices for V to pick a random 
    and check that 
� Define honest proof   

r ∈ F

gx,W (t) =(( Wa •Aa (t
gates a
∑ ))+ A '(t))•(( Wa •Ba (t

gates a
∑ ))+B '(t))−(( Wa •Ca (t

gates a
∑ ))+C '(t))

W  satisfies all constraints ⇔ gx,W (t) vanishes on H⇔

(Key Condition) :   gx,W (t) = hH (t)•h(t) for some h of degree at most S.**

π  to be πW = 〈•,W 〉 and π d,  where d = (the S +1 coefficients of h*)

gx,W (r) = hH (r)•h(r).*



� Define: 

� Then:  n al 
 
 
� To check (Key Condition), it suffices for V to pick a random 
    and check that 
� Define honest proof   

r ∈ F

π  to be πW = 〈•,W 〉 and π d,  where d = (the S +1 coefficients of h*)

gx,W (t) =(( Wa •Aa (t
gates a
∑ ))+ A '(t))•(( Wa •Ba (t

gates a
∑ ))+B '(t))−(( Wa •Ca (t

gates a
∑ ))+C '(t))

V can compute from    by 
evaluating      at the point  

 

π
π d

(1, r, r2,..., rS ).

W  satisfies all constraints ⇔ gx,W (t) vanishes on H⇔

(Key Condition) :   gx,W (t) = hH (t)•h(t) for some h of degree at most S.**

gx,W (r) = hH (r)•h(r).*



� Define: 

� Then:  n al 
 
 
� To check (Key Condition), it suffices for V to pick a random 
    and check that 
� Define honest proof   

r ∈ F

gx,W (t) =(( Wa •Aa (t
gates a
∑ ))+ A '(t))•(( Wa •Ba (t

gates a
∑ ))+B '(t))−(( Wa •Ca (t

gates a
∑ ))+C '(t))

V can compute from    by 
evaluating      at the point  

 

π

(1, r, r2,..., rS ).
V can compute from    by querying       at three points: 
  

π
(A1(r),...,AS (r)), (B1(r),...,BS (r)),  and (C1(r),...,CS (r)).

W  satisfies all constraints ⇔ gx,W (t) vanishes on H⇔

(Key Condition) :   gx,W (t) = hH (t)•h(t) for some h of degree at most S.**

π  to be πW = 〈•,W 〉 and π d,  where d = (the S +1 coefficients of h*)

π d

πW

gx,W (r) = hH (r)•h(r).*



� Define: 

� Then:  n al 
 
 
� To check (Key Condition), it suffices for V to pick a random 
    and check that 
� Define honest proof   

r ∈ F

gx,W (t) =(( Wa •Aa (t
gates a
∑ ))+ A '(t))•(( Wa •Ba (t

gates a
∑ ))+B '(t))−(( Wa •Ca (t

gates a
∑ ))+C '(t))

V can compute on her 
own in time O(S). 

V can compute from    by 
evaluating      at the point  

 

π

(1, r, r2,..., rS ).
V can compute from    by querying       at three points: 
  

π
(A1(r),...,AS (r)), (B1(r),...,BS (r)),  and (C1(r),...,CS (r)).

W  satisfies all constraints ⇔ gx,W (t) vanishes on H⇔

(Key Condition) :   gx,W (t) = hH (t)•h(t) for some h of degree at most S.**

π  to be πW = 〈•,W 〉 and π d,  where d = (the S +1 coefficients of h*)

π d

gx,W (r) = hH (r)•h(r).*

πW



1- and 2-Message Arguments 



�  [Micali 1994] gave a one-message argument system in the Random Oracle model 
using the Fiat-Shamir heuristic to remove interaction from Kilian’s protocol. 
�  Idea: Use random oracle in place of CRHF when building the Merkle tree, and to choose 

V’s PCP queries. 

But one-message argument systems are impossible (for non-trivial languages) in the 
standard model. 

At least, if you want security against non-uniform cheating provers. 

ttention therefore turns to 2-message argument systems. 
Goal: obtain same efficiency as 4-message argument systems obtained by combining 
commit/reveal protocol for linear functions from [IKO 2007] with GGPR’s linear PCP. 

Such arguments are called SNARGs (Succinct Non-interactive ARGuments). 
“Succinct” refers to efficient support for non-determinism, i.e., P can convince V it 
holds a non-deterministic witness w that x in L, without sending w to V. 

here are obstacles to basing such 2-message arguments on standard (i.e., falsifiable) 
assumptions. Existing constructions use non-falsifiable ones. 

Micali’s Argument System in RO Model 



�  [Micali 1994] gave a one-message argument system in the Random Oracle model 
using the Fiat-Shamir heuristic to remove interaction from Kilian’s protocol. 
�  Idea: Use random oracle in place of CRHF when building the Merkle tree, and to choose 

V’s PCP queries. 

�  But one-message argument systems are impossible (for non-trivial languages) in 
the standard model. 
�  At least, if you want security against non-uniform cheating provers. 

�  Attention therefore turns to 2-message argument systems in standard model. 
Goal: obtain same efficiency as 4-message argument systems obtained by combining 
commit/reveal protocol for linear functions from [IKO 2007] with GGPR’s linear PCP. 

Such arguments are called SNARGs (Succinct Non-interactive ARGuments). 
“Succinct” refers to efficient support for non-determinism, i.e., P can convince V it 
holds a non-deterministic witness w that x in L, without sending w to V. 

ere are obstacles to basing such 2-message arguments on standard (i.e., falsifiable) 
assumptions. Existing constructions use non-falsifiable ones. 

Micali’s Argument System in RO Model 



�  [Micali 1994] gave a one-message argument system in the Random Oracle model 
using the Fiat-Shamir heuristic to remove interaction from Kilian’s protocol. 
�  Idea: Use random oracle in place of CRHF when building the Merkle tree, and to choose 

V’s PCP queries. 

�  But one-message argument systems are impossible (for non-trivial languages) in 
the standard model. 
�  At least, if you want security against non-uniform cheating provers. 

�  Attention therefore turns to 2-message argument systems in standard model. 
�  Goal: obtain same efficiency as 4-message argument systems obtained by combining 

commit/reveal protocol for linear functions from [IKO 2007] with GGPR’s linear PCP. 
�  Such arguments are called SNARGs (Succinct Non-interactive ARGuments). 
�  “Succinct” refers to efficient support for non-determinism, i.e., P can convince V it 

holds a non-deterministic witness w that x in L, without sending w to V. 

�  There are obstacles to basing such 2-message arguments on standard (i.e., 
falsifiable) assumptions. Existing constructions use non-falsifiable ones. 

Micali’s Argument System in RO Model 



�  Idea: Replace the 4-message commit/reveal protocol for linear functions of 
[IKO 2007] with a 2-message one. 
�  Rather than use an additively homomorphic encryption scheme, use a stronger 

primitive: “linear-only” encryption. 
�  Roughly, this is an encryption scheme that is: 

�  Semantically secure 
�  Additively Homomorphic 
�  “linear-only” i.e., P is forced to behave in a linear manner. 

�  More formally, given ciphertexts c1=Enc(a1), …, ck=Enc(akit is assumed 
that the only way to efficiently compute a new ciphertext     in the image of  
Enc is to “know”                   such that                                                   .  

�  Actually formalized with an extractability guarantee. 

2-Message Arguments from Linear PCPs 

c1 = Enc(a1),...,ck = Enc(ak ),
c '

Enc β,α1,...,αk c ' = Enc(β +α1 •a1 +...+αk •ak )



�  V simulates the linear PCP verifier, sending queries               to P encrypted 
under a linear-only encryption scheme. 

�  P uses the homomorphism property to compute  
�  P sends these values to V, who decrypts them and simulates the PCP verifier’s 

accept/reject process. 
�  Soundness proof sketch: By linear-only property, when P convinces V to 

accept, P must “know” an affine function     such that                            
convinces the PCP verifier. By semantic security of        ,     must be 
independent of the queries V sent to P. Hence,      must actually be a linear 
PCP proof. Soundness now follows from soundness of the linear PCP. 

�  Completeness is obvious. 

2-Message Arguments from Linear PCPs: Protocol Details 
q1,...,qk

Enc(π (q1)),..., Enc(π (qk )).

Ω
Enc Ω

Ω

Ω(q1),...,Ω(qk )



�  Proof of Knowledge (PoK): Whenever P can convince V that input x is in 
language L, there must exist a polynomial time extractor algorithm E that, 
given access to P, can output a witness w that x is in L.   
�  Important in crypto settings where there may be many valid solutions/witnesses, but only 

one “correct” one. 
�  E.g. Suppose V knows only a Merkle-hash h(x) of an input x, and wants to make sure P 

correctly executed some computation C on x to produce some output y. 
�  A SNARG without PoK can only guarantee that there exists a x’ such that C(x’)=y and 

h(x’)=h(x). This is not meaningful since such an x’ could always exist, as there are 
collisions under h (even though they are hard to find).  

�  But if the argument systems also satisfies PoK, then P must know such a x’, not just that 
such an x’ exists. And by collision-resistance of h, x’ actually must equal to true input x. 

�  The arguments systems I’ve described do satisfy PoK. 

Argument Systems Satisfying Additional Properties 



�  Public Verifiability. The linear-only encryption-based SNARG from before is 
not publicly verifiable, since V’s secret key is required to decrypt P’s messages 
and thereby execute the PCP verifier’s checks. 

�  Instead, use a “linear-only one-way encoding” scheme. This satisfies 4 rough 
properties. 
�  Additive homomorphism, to enable P to compute the “encoding” of                                

from             . 
�  Linear-only. 
�  Allows any party to execute the linear PCP verifier’s decision predicate on encoded answers, 

without decoding.  
�  The candidate linear-only encodings in the literature only support a limited class of verifier 

decision predicates. The PCP verifier’s test must be of the form “Test if                                     ”, 
where     is a quadratic polynomial. Fortunately, GGPR’s PCP verifier satisfies this property.  

�  “One-Way” Property: ensures that, given encodings of any set of queries               , P cannot 
“learn” a set of answers that would cause V’s check to pass, unless P actually knows a linear 
PCP proof     causing the PCP verifier to accept. 

�  Candidate linear-only one-way encoding schemes are based on knowledge of exponent 
assumptions in bilinear groups. 

Argument Systems Satisfying Additional Properties 

Enc(π (q1)),..., Enc(π (qk ))
q1,...,qk

Q(π (q1),....,π (qk )) = 0
Q

q1,...,qk

π



Implementations 



�  4-message argument system based on [IKO 2007]’s commit/reveal protocol for linear 
functions and linear PCP of size               implemented and refined by [SMBW 2012] 
and  [SVPBBW 2012]  (“Pepper” and “Ginger”). 

�  4-message argument system based on [IKO 2007]’s commit/reveal protocol for linear 
functions and [GGPR 2013]’s linear PCP of size               implemented by [SBVBPW 
2013] (“Zaatar”). 

�  2-message argument system based on the above theory works (but with stonger 
cryptographic primitives) implemented by [PHGR 2013] (“Pinocchio”), and also by 
[BSCGTV13] (“SNARKs for C”). 

�  Many subsequent refinements: [VSBW 2013], [BFRSBW 2013], [WSRBW 2015], 
[BSCTV14], [BSCGTV15], [CFHKKNPZ15], etc. 

�  See [Blumberg and Walfish, CACM 2016] for a now-slightly-out-of-date comparison of 
implementations (including interactive proofs). 

Implementations of Argument Systems 

|F |O (S
2 )

|F |O (S )



�  [Babai 1985] L. Babai. Trading Group Theory for Randomness. STOC, 1985. 
�  [BC 2012] N. Bitansky and A. Chiesa. Succinct Arguments from Multi-prover 

Interactive Proofs and Their Efficiency Benefits. CRYPTO 2012. 
�  [BSCGT 2013] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer. On the Concrete 

Efficiency Threshold of Probabilistically Checkable Proofs. STOC 2013. 
�  [BSCGT 2013B] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer. Fast Reductions 

from RAMs to Delegatable Succinct Constraint Satisfaction Problems. ITCS 2013. 
�  [BSCGTV 2013] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, M. Virza. SNARKs for 

C: Verifying Program Executions Succinctly and in Zero Knowledge. CRYPTO 2013. 
�  [BSCGTV 2015] E. Ben-Sasson, A. Chiesa, M. Green, E. Tromer, M. Virza. Secure 

Sampling of Public Parameters for Succinct Zero-Knowledge Proofs. Oakland 2015. 
�  [BSCTV 2014A] E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza. Succinct Non-interactive 

Zero Knowledge For a Von Neumann Architecture. USENIX Security 2014. 
�  [BSCTV 2014B] E. Ben-Sasson, A. Chiesa, E. Tromer, M. Virza. Scalable Zero 

Knowledge via Cycles of Eliptic Curves. CRYPTO 2014. 
�  [BCIOP 2013] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, O. Paneth, Succinct Non-

Interactive Arguments via Linear Interactive Proofs, TCC 2013. 

References 



�  [BFL 1991] L. Babai, L. Fortnow, C. Lund. Non-Deterministic Exponential Time has Two-Prover 
Interactive Protocols. Computational Complexity, 1991. Preliminary version in FOCS, 1990. 

�  [BSVRBW 2013]. B. Braun, A. Feldman, Z. Ren, S. Setty, A.J. Blumberg, M. Walfish. 
Verifying Computations with State. SOSP 2013. 

�  [BSGHSV 2005] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, S. Vadhan. Short PCPs 
Verifiable in Polylogarithmic Time. CCC 2005. 

�  [BSS 2008] E. Ben-Sasson, M. Sudan, Short PCPs with Polylog Query Complexity. 
SICOMP 2008. Preliminary version in STOC 2005.  

�  [BTVW 2014] A. J. Blumberg, J. Thaler, V. Vu, M. Walfish. Verifiable Computation Using 
Multiple Provers. Manuscript, 2014.  

�  [BW 2015]. A. J. Blumberg and M. Walfish. Verifying Computations Without Reexecuting 
Them. CACM, 2015. 

�  [CFHKKNPZ 2015]. C. Costello, C. Fournet, J. Howell,  M. Kohlweiss, B. Kreuter, M. 
Naehrig, B. Parno, S. Zahur. Geppetto: Versatile Verifiable Computation. Oakland 2015. 

�  [CMT 2012] G Cormode, M. Mitzenmacher, J. Thaler. Practical Verified Computation with 
Streaming Interactive Proofs. ITCS 2012. 

�  [FRS 1990] L. Fortnow, R. Rompel, M. Sipser. On the Power of Multi-Prover Interactive 
Interactive Protocols. Theoretical Computer Science, 1994. Preliminary version in 
Structure in Complexity Theory, 1990. 

References 



�  [GGPR 2013] R. Gennaro, C. Gentry, B. Parno, M. Raykova. Quadratic Span Programs 
and Succinct NIZKs without PCPs. Eurocrypt 2013. 

�  [GKR 2015] S. Goldwasser. Y. Tauman Kalai, G. Rothblum. Delegating Computation: 
Interactive Proofs for Muggles. J. ACM, 2015. Preliminary version in STOC 2008. 

�  [GMR 1989] S. Goldwasser, S. Micali, C. Rackoff. The Knowledge Complexity of 
Interactive Proof Systems. SICOMP, 1989. Preliminary version in STOC 1985. 

�  [GS 1989] Y. Gurevich and S. Shelah. Nearly Linear Time. In Symposium on Logical 
Foundations of Computer Science, 1989. 

�  [IKO 2007]  Y. Ishai, E. Kushilevitz, R. Ostrovsky. Efficient Arguments without Short 
PCPs. CCC 2007. 

�  [Kilian 1992] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments 
(Extended Abstract). STOC 1992. 

�  [KRR 2014]  Y. Tauman Kalai, R. Raz, R. Rothblum. How to Delegate Computations: The 
Power of No-Signaling Proofs. STOC 2014. 

�  [LFKN 1992] C. Lund, F. Fortnow, H. Karloff, N. Nisan. Algebraic Methods for 
Interactive Proof Systems. J. ACM 1992. Preliminary version in FOCS, 1990. 

�  [PHGR 2013]. B. Parno, J. Howell, C. Gentry, M. Raykova. Pinnochio: Nearly Practical 
Verifiable Computation. Oakland 2013. 

References 



�  [Robson 1991] JM Robson. An O(T log T) Reduction from RAM Computations to Satisfiability. 
Theoretical Computer Science, 1991. 

�  [SBVBPW 2013]. S. Setty, B. Braun, V. Vu, A.J. Blumberg, B. Parno, M. Walfish. Resolving the 
conflict between generality and plausibility in verified computation. EuroSys 2013. 

�  [SMBW 2012] S. Setty, R. McPherson, A.J. Blumberg, M. Walfish, Making argument systems for 
outsourced computation practical (sometimes). NDSS 2012. 

�  [SVPBBW 2012] S. Setty, V. Vu, N. Panpalia, B. Braun, A.J. Blumberg, M. Walfish, Taking proof-
based verified computation a few steps closer to practicality. USENIX Security 2012. 

�  [Shamir 1992] A. Shamir. IP=PSPACE. J ACM. 1992. 

�  [Thaler 2013] J. Thaler. Time-Optimal Interactive Proofs for Circuit Evaluation. CRYPTO 2013. 

�  [TRMP 2012] J. Thaler, M. Roberts, M. Mitzenmacher, H. Pfister. Verifiable Computation with 
Massively Parallel Interactive Proofs. HotCloud 2012. 

�  [WHGsW 2016]. R. Wahby, M. Howald, S. Garg, a shelat, M. Walfish. Verifiable ASICs. Oakland 
2016. 

�  [WSRBW 2015]. R. Wahby, S. Setty, Z. Ren, A.J. Blumberg, M. Walfish. Efficient RAM and 
control flow in verifiable outsourced computation. NDSS 2015. 

�  [VSBW 2013]. V. Vu, S. Setty, A.J. Blumberg, and M. Walfish. A hybrid architecture for 
interactive verifiable computation. Oakland 2013. 

References 


