
Rocco Servedio, Columbia University 
Li-Yang Tan, Columbia University 
Justin Thaler, Harvard University 

Attribute-Efficient Learning and Weight-
Degree Tradeoffs for Polynomial 

Threshold Functions 



Attribute-Efficient Learning 
�  Attribute-efficient learning is a clean framework capturing the 

problem of learning in the presence of irrelevant information. 
�  Especially important in the age of Big Data. 

�  Consider a scientist trying to identify genetic causes of a disease. 
�  The disease depends on the interaction of a small number of genes. 
�  The scientist collects a massive amount of genetic data from participants. 
�  Only a small amount of this information is actually relevant to the 

function being learned (the mapping of genes to a subject's 
phenotype).  
 
 



Attribute-Efficient Learning 
�  Goal of an algorithm for attribute-efficient learning: 

� Run in time poly(n), where n is total number of attributes. 
� Use a number of examples which is polynomial in the 

description length of the function f to be learned.  
� The latter can be substantially smaller than n if most of the 

attributes are irrelevant. 



Comparison to Junta Problem 
�  The most general version of the problem of problem of learning in 

the presence of irrelevant information is called the “Junta 
Problem” [Blum-Langley 1997, Mossel-O’Donnell-Servedio 2004]. 
�  Assume nothing about f other than that it depends on k << n attributes.  
�  Uniform-distribution variant of Junta Problem called “the most 

important open question in uniform distribution learning” by MOS. 

�  Our goal is both more and less ambitious than the uniform-
distribution Junta Problem. 
�  We want to learn under arbitrary distributions. 
�  But are willing to assume the relevant attributes interact in structured ways.  
�  We focus on attribute-efficient learning of decision lists. 



Decision Lists 
�  A length k decision list of x1, …, xn is a sequence of “if-then-else” 

statements: 

§  Attribute-efficiently learning DLs is a well-studied and 
challenging open problem.   

§  First posed by [Blum 1992], subsequently considered by 
many authors [Blum-Langley 1997, Valiant 1999, Servedio 
2000, Nevo-El-Yaniv 2002, Klivans-Servedio 2006, Long-
Servedio 2006]. 

§  DLs are PAC-learnable in poly(n) time, but seem to lie on 
boundary of tractability in the attribute-efficient setting. 

x1 x5 x9 x3 x7 1 

0 1 1 0 1 



Mistake-Bounded Learning 
�  We establish our results in the mistake-bounded model. 

�  Standard conversions [Littlestone 1989] turn mistake bounds to 
sample complexity bounds on PAC learning algorithms. 

�  Mistake-Bounded model: 
�  Learning consists of a sequence of trials. In each trial, the 

learner is given some x from {0,1}n and outputs h(x), her guess 
as to what f(x) is.   
§  If h(x) = f(x), great!  
§  If h(x) ≠ f(x), learner is charged a mistake. 

�  Goal: design an efficient algorithm that minimizes number of 
mistakes over all possible (infinite) sequences of trials. 



Algorithmic Machinery 
�  Theorem (Expanded-Winnow Algorithm) [Klivans-Servedio 2004]:  
Let f(x)=sgn(p(x1, … , xn)), where p is a degree-d polynomial 
with integer coefficients whose absolute values sum to W. Then 
we can learn f in time nO(d) per example and mistake bound  
O(W2 d log(n)).  
 
�  p is called a polynomial threshold function (PTF) for f, and W is 

called the weight of p. 

§  Corollary: Attribute-efficient learning of DLs reduces to 
showing that every length k decision list has a low-degree, 
low-weight PTF. 



What was known? 
�  Theorem [Klivans-Servedio 2004]: Let f be a length k DL. For 

every d ≤ k1/3,  there is a degree d, weight 2O(k/d^2) PTF 
computing f. 

�  Theorem [Beigel 1994]: There is a length k decision list f such 
that for any d ≤ k, any degree d PTF computing f requires 
weight 2Ω(k/d^2). 

�  So both theorems are tight at low degrees (d<k1/3). But it was 
open what happens at higher degrees.  

�  We show that at higher degrees, neither theorem is tight! 



New Results 
�  Theorem: Let f be a length k DL. For every d≥k1/3, there is a 

degree d, weight 2O((k/d)^1/2) GPTF* computing f. 
*A GPTF is slightly more expressive than a PTF, and just as useful for 
learning purposes. 

�  Theorem: There is a length k DL such that for any d ≤ k, any 
degree d PTF computing f requires weight 2Ω((k/d)^1/2). 

�  Both of these theorems improve on prior work when the degree is 
relatively high (d > k1/3). 

�  The main remaining gap is that our upper bound uses GPTFs while 
our lower bound applies only to PTFs. 



Comparison of New Upper Bound to 
Prior Work [Klivans-Servedio 2004] 

 Logarithm of  
PTF Weight  

Upper Bound 

PTF  Weight Upper Bound for DLs of length k=1,000,000 

Degree d  

•  Blue line is 2O(k/d^2) PTF weight upper bound of  
      [Klivans-Servedio 2004] (holds for d < k1/3). 
•  Red Line is our new 2^O((k/d)^1/2) GPTF weight 

upper bound (holds for d ≥k1/3). 

200 400 600 800 1000

50

100

150



Comparison of Our Algorithm to Prior Work 

run time  mistake bound 
Winnow Algorithm 
[Littlestone 1988] 

n 2k log(n) 

Halving Algorithm 
[Littlestone 1988] 

nk k log(n) 

Klivans-Servedio 
(for every d ≤ k1/3) 

nd 2O(k/d^2) log(n) 

Servedio-Tan-Thaler 
(for every d ≥ k1/3) 

nd 2O((k/d)^1/2) log(n) 



Comparison of New Lower Bound to 
Prior Work [Beigel 1994] 

 Logarithm of  
PTF Weight  

Lower Bound 

PTF  Weight Lower Bound for DLs of length k=1,000,000 

Degree  

•  Blue line is 2O(k/d^2) PTF weight lower bound of 
[Beigel 1994]. 

•  Red Line is our new 2O((k/d)^1/2) PTF weight 
lower bound. 

200 400 600 800 1000

50

100

150



Upper Bound Proof Sketch 
�  Given: a length k DL f. 
�  Break f into k/b “blocks” of length b.  
�  Closely approximate each block i in the L∞-norm with a low-

degree polynomial pi(x).  
�  If block i “makes a decision”, pi(x) outputs a value close to ±1. 
�  Otherwise, pi(x) outputs 0. 

�  Put the approximations together to get a PTF p for the entire 
decision list f. 
�  p(x)=Σi 3i pi(x). 
�  The highest block i to “make a decision” will dominate the output of p, 

so f=sgn(p(x)). 
Degree of p equals degree of the pi’s.  
Weight of p depends on the number of blocks and the weight of the pi’s. 
Choose block length to balance these contributions. 



Upper Bound Proof Sketch 
�  Given: a length k DL f. 
�  Break f into k/b “blocks” of length b.  
�  Closely approximate each block i in the L∞-norm with a low-

degree polynomial pi(x).  
�  If block i “makes a decision”, pi(x) outputs a value close to ±1. 
�  Otherwise, pi(x) outputs 0. 

�  Put the approximations together to get a PTF p for the entire 
decision list f. 
�  p(x)=Σi 3i pi(x). 
�  The highest block i to “make a decision” will dominate the output of p, 

so f=sgn(p(x)). 
�  Degree of p equals degree of the pi’s.  
�  Weight of p depends on the number of blocks and the weight of the 

pi’s. Choose block length to balance these contributions. 



Upper Bound Proof Sketch 
�  Klivans-Servedio use degree d Chebyshev polynomials to 

construct each approximating polynomial pi(x). 
�  But when the d is relatively large, the degree d Chebyshev 

polynomials have very high weight. 
�  Instead, we use lower degree Chebyshev polynomials, composed 

with a high-degree monomial. 
� This allows us to achieve lower weight approximating 

polynomials pi(x) than those obtained by Klivans-Servedio for 
the same degree. 



Lower Bound Proof Sketch 
�  We prove a lower bound for a specific decision list, ODD-

MAX-BIT (OMB). 

�  Look at the right-most bit set to 1. If it is at an odd 
coordinate, output 1, else output 0. 

1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 . . . . 0  

x1 x2 x3 x4 x5 . . .  

1 0 1 0 1 

xj 



Lower Bound Proof Sketch 
�  Lower bound argument shows that “block-based” approach of 

our upper bound is intrinsic. 
�  Break the OMB function into k/b blocks of length b.  
�  Show that you can take any PTF p for OMB and turn it into a 

polynomial q closely approximating each block.  
�  q has the same degree and weight as p. 

�  Beigel used Markov’s inequality from approximation theory 
to conclude that q has to have high degree, and hence p has to 
have high degree as well. 



Lower Bound Proof Sketch 
�  Markov’s inequality bounds the derivative of a polynomial q 

in terms of its degree. 

�  We prove a new Markov-type inequality which takes into 
account both the degree of q and the size of its coefficients. 



Lower Bound Proof Sketch 
�  Markov's Inequality: Let q : [-1,1] à [-1,1] be a real 

polynomial with deg(q) ≤ d. Then max|x|≤1 |q'(x)| ≤ d2. 
 

�  Our Markov-type Inequality: Let q : [-1,1] à [-1,1] be a real 
polynomial with deg(q) ≤ d and coefficients of absolute value at 
most W. If ½ ≤ max|x|≤1|q(x)|, then  

 max|x|≤1|q'(x)| = O(d*max{d, log(W)}). 
�  If W << 2d, our inequality is tighter than Markov’s. 
�  This allows us to improve Beigel’s lower bound for OMB when d 

is relatively large. 
Tight example for Markov: degree d Chebyshev polynomials. Tight 
example for our inequality degree d Chebyshev polynomials 
composed with a high-degree monomial. 
Same intuition applied for our upper bound. 



Lower Bound Proof Sketch 
�  Markov's Inequality: Let q : [-1,1] à [-1,1] be a real 

polynomial with deg(q) ≤ d. Then max|x|≤1 |q'(x)| ≤ d2. 
 

�  Our Markov-type Inequality: Let q : [-1,1] à [-1,1] be a real 
polynomial with deg(q) ≤ d and coefficients of absolute value at 
most W. If ½ ≤ max|x|≤1|q(x)|, then  

 max|x|≤1|q'(x)| = O(d*max{d, log(W)}). 
�  If W << 2d, our inequality is tighter than Markov’s. 
�  This allows us to improve Beigel’s lower bound for OMB when d 

is relatively large. 
�  Tight example for Markov: degree d Chebyshev polynomials. Tight 

example for our inequality degree d Chebyshev polynomials 
composed with a high-degree monomial. 

�  Same intuition applied for our upper bound. 



Conclusions 
�  We provide new positive and negative results for attribute-

efficient learning of decision lists.  
�  Our results rely on a careful study of PTF weight-degree tradeoffs 

for decision lists. 
�  Both our upper and lower bounds improve over prior work when the 

allowed degree of the (G)PTF is relatively high. 

�  Open questions:  
�  Cryptographic hardness of true attribute-efficient learning of length k 

decision lists? [Servedio 2000] has partial results in this direction. 
�  New algorithms: beyond PTFs? 
�  Moving beyond DLs: Attribute-efficient learning of more expressive 

concept classes like decision trees and DNFs? 



Thank you! 


