Quantum Lower Bounds Via Laurent Polynomials

Justin Thaler (Georgetown University)

with Scott Aaronson, Robin Kothari, William Kretschmer

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be a function and $x \in \{0,1\}^n$ be an input to f.

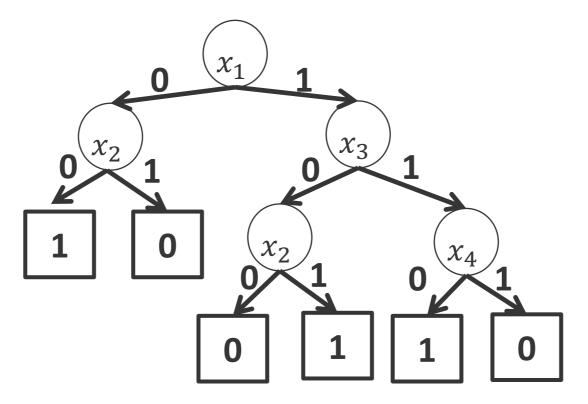
x =	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	•••	\boldsymbol{x}_n	
-----	-----------------------	-----------------------	-----------------------	-----	--------------------	--

Goal: Compute f(x) by reading as few bits of x as possible.

Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be a function and $x \in \{0,1\}^n$ be an input to f.

$x = \left x_1 \right x_2$	<i>x</i> ₃		$ x_n $	
------------------------------	-----------------------	--	---------	--

Goal: Compute f(x) by reading as few bits of x as possible.



Let $f: \{0,1\}^n \to \{0,1\}$ be a function and $x \in \{0,1\}^n$ be an input to f.

$x = \begin{bmatrix} \\ \end{bmatrix}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	•••	\boldsymbol{x}_n	
--	-----------------------	-----------------------	-----------------------	-----	--------------------	--

Goal: Compute f(x) by reading as few bits of x as possible.

Quantum Query Complexity: Algorithm can query bits of x in superposition, must output f(x) with probability at least 2/3.

Let $f: \{0,1\}^n \to \{0,1\}$ be a function and $x \in \{0,1\}^n$ be an input to f.

$x = \begin{bmatrix} x \\ y \end{bmatrix}$	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	•••	\boldsymbol{x}_n	
--	-----------------------	-----------------------	-----------------------	-----	--------------------	--

Goal: Compute f(x) by reading as few bits of x as possible.

Quantum Query Complexity: Algorithm can query bits of x in superposition, must output f(x) with probability at least 2/3.

Example: Let $OR_n(x) = \bigvee_{i=1}^n x_i$ and $AND_n(x) = \bigwedge_{i=1}^n x_i$. Then $Q(OR_n) = Q(AND_n) = \Theta(\sqrt{n})$ [Grover96, Bennett-Bernstein-Brassard-Vazirani97] Classically, we need $\Theta(n)$ queries for both problems.

Why query complexity?

Complexity theoretic motivation

- We can prove statements about the power of different computational models! (E.g., exponential separation between classical and quantum algorithms)
- Oracle separations between classes, lower bounds on restricted models, upper and lower bounds in communication complexity, circuit complexity, data structures, etc.

Algorithmic motivation

- Algorithms often transfer to the circuit model, while the abstraction of query complexity often gets rid of unnecessary details.
- Most quantum algorithms are naturally phrased as query algorithms. E.g., Shor, Grover, Hidden Subgroup, Linear systems (HHL), etc.

Lower bounds on quantum query complexity

Positive-weights adversary method [Ambainis]

Easy to use, but has many limitations. Cannot show any of the results of our work.

Negative-weights adversary method [HLS07]

Equals (up to constants) quantum query complexity, but difficult to use.

In recent years, the adversary methods have become the tools of choice for proving lower bounds.

Polynomial method

- Equals (up to constants) quantum query complexity for many natural functions.
- Can show lower bounds for algorithms with unbounded error, small error, and no error.
- Works when the positive-weights adversary fails (e.g., the collision problem).

Lower bounds on quantum query complexity

Positive-weights adversary method [Ambainis]

Easy to use, but has many limitations. Cannot show any of the results of our work.

Negative-weights adversary method [HLS07]

Equals (up to constants) quantum query complexity, but difficult to use.

In recent years, the adversary methods have become the tools of choice for proving lower bounds.

Polynomial method

- Equals (up to constants) quantum query complexity for many natural functions.
- Can show lower bounds for algorithms with unbounded error, small error, and no error.
- Works when the positive-weights adversary fails (e.g., the collision problem).
- Can imply lower bounds for **more powerful models** than quantum query complexity:
 - "Lifts" to quantum communication lower bounds [She08, SZ09]

Lower bounds on quantum query complexity

Positive-weights adversary method [Ambainis]

Easy to use, but has many limitations. Cannot show any of the results of our work.

Negative-weights adversary method [HLS07]

Equals (up to constants) quantum query complexity, but difficult to use.

In recent years, the adversary methods have become the tools of choice for proving lower bounds.

Polynomial method

- Equals (up to constants) quantum query complexity for many natural functions.
- Can show lower bounds for algorithms with unbounded error, small error, and no error.
- Works when the positive-weights adversary fails (e.g., the collision problem).
- Can imply lower bounds for **more powerful models** than quantum query complexity:
 - "Lifts" to quantum communication lower bounds [She08, SZ09]
 - This work: Extensions to lower bound "super-powerful" query/communication models.

The Polynomial Method For Quantum Query Lower Bounds

Approximate degree: Minimum degree of a polynomial $p(x_1, ..., x_n)$ with real coefficients such that $\forall x \in \{0,1\}^n$, $|f(x) - p(x)| \le 1/3$.

 $Q(OR_n) = Q(AND_n) = \Theta(\sqrt{n})$

 $\widetilde{\operatorname{deg}}(f)$

The Polynomial Method For Quantum Query Lower Bounds

Approximate degree: Minimum degree of a polynomial $p(x_1, ..., x_n)$ with real coefficients such that $\forall x \in \{0,1\}^n$, $|f(x) - p(x)| \le 1/3$.

Theorem ([Beals-Buhrman-Cleve-Mosca-de Wolf01]): For any f, $Q(f) \ge \frac{1}{2} \widetilde{\deg}(f)$

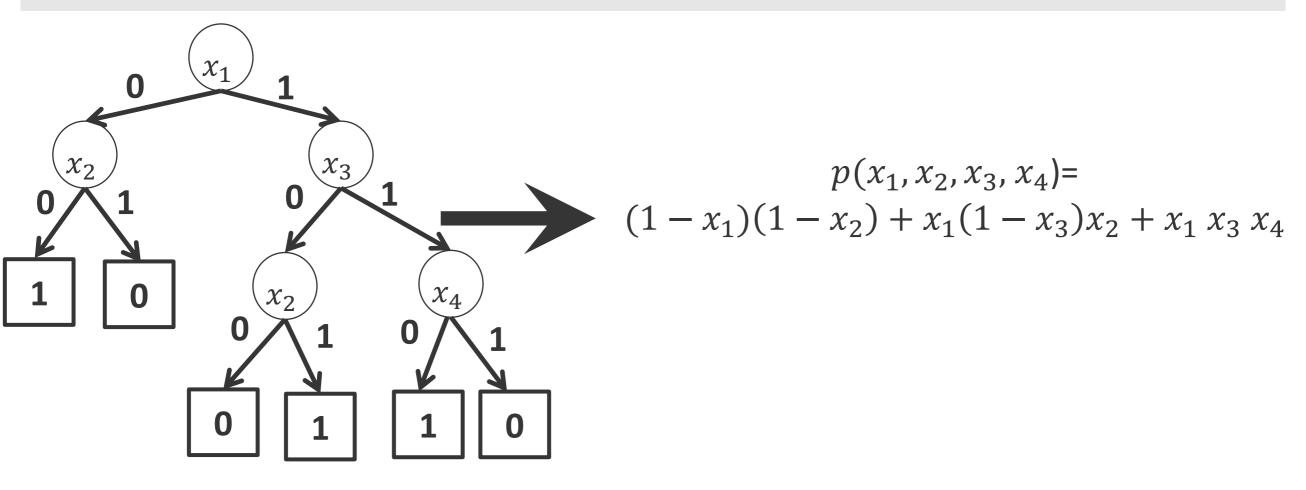
The polynomial method

 $\widetilde{\deg}(f)$

- For any *T*-query quantum algorithm *A*, there is a polynomial *p* of degree 2*T* such that:
 - For all $x \in \{0,1\}^n$, p(x) equals the probability that A outputs 1 on input x.

Approximate degree and the Polynomial Method

- For any *T*-query quantum algorithm *A*, there is a polynomial *p* of degree 2*T* such that:
 - For all $x \in \{0,1\}^n$, p(x) equals the probability that A outputs 1 on input x.



The Approximate Counting Problem

Approximate Counting

• Given $x \in \{0,1\}^n$, let $S = \{i : x_i = 1\}$.

Approximate counting problem (AC_{w,n}(x)): Determine whether $|S| \le w$ or $|S| \ge 2w$, promised that one of these is the case.

Randomized query complexity: $\theta(n/w)$

Quantum query complexity: $\theta\left(\sqrt{n/w}\right)$

- Quantum Upper Bound (Brassard-Høyer-Tapp 1998): Grover + quantum phase estimation (or just Grover...)
- Quantum Lower Bound (Nayak-Wu 1998): Proven via polynomial method

This Work: Understanding "Super-Powerful" Query Models First Result: QMA Protocols For Approximate Counting

- In a QMA query protocol for *f*, Merlin knows the input *x* but Arthur does not.
- Merlin claims that f(x) = 1, and sends Arthur a **proof** $|\phi\rangle$ attesting to this. $|\phi\rangle$ is an arbitrary *m*-qubit message.
- After receiving $|\varphi\rangle$, Arthur queries at most T bits of the input in superposition.
- Completeness and soundness must hold.
 - $f(x) = 1 \Rightarrow$ there exists a $|\varphi\rangle$ causing Arthur to accept with probability at least 2/3
 - $f(x) = 0 \Rightarrow$ for all possible proofs $|\phi\rangle$, Arthur rejects with probability at least 2/3.

- In a QMA query protocol for *f*, Merlin knows the input *x* but Arthur does not.
- Merlin claims that f(x) = 1, and sends Arthur a **proof** $|\phi\rangle$ attesting to this. $|\phi\rangle$ is an arbitrary *m*-qubit message.
- After receiving $|\varphi\rangle$, Arthur queries at most T bits of the input in superposition.
- Completeness and soundness must hold.
 - $f(x) = 1 \Rightarrow$ there exists a $|\varphi\rangle$ causing Arthur to accept with probability at least 2/3
 - $f(x) = 0 \Rightarrow$ for all possible proofs $|\varphi\rangle$, Arthur rejects with probability at least 2/3.
- **Cost** of a protocol is the length m + T.

- In a QMA query protocol for *f*, Merlin knows the input *x* but Arthur does not.
- Merlin claims that f(x) = 1, and sends Arthur a **proof** $|\phi\rangle$ attesting to this. $|\phi\rangle$ is an arbitrary *m*-qubit message.
- After receiving $|\varphi\rangle$, Arthur queries at most T bits of the input in superposition.
- Is there an efficient QMA protocol for Approximate Counting?
 - i.e., Arthur is promised that either $|S| \le w$ or $|S| \ge 2w$, and Merlin wants to prove that $|S| \ge 2w$.
 - "Efficient" means cost polylog(n).

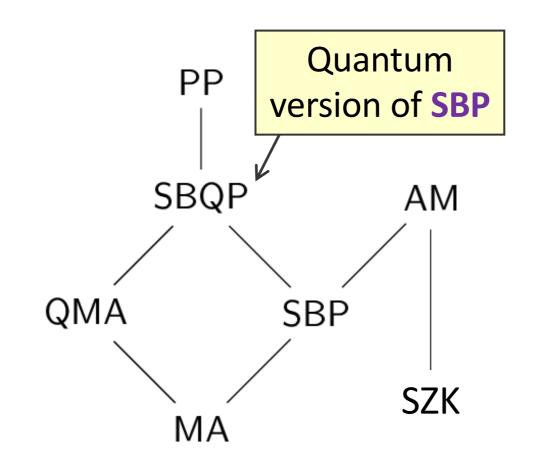
- In a QMA query protocol for *f*, Merlin knows the input *x* but Arthur does not.
- Merlin claims that f(x) = 1, and sends Arthur a **proof** $|\phi\rangle$ attesting to this. $|\phi\rangle$ is an arbitrary *m*-qubit message.
- After receiving $|\varphi\rangle$, Arthur queries at most T bits of the input in superposition.
- Is there an efficient QMA protocol for Approximate Counting?
 - i.e., Arthur is promised that either $|S| \le w$ or $|S| \ge 2w$, and Merlin wants to **prove** that $|S| \ge 2w$.
- Obvious solutions:
 - 1. Merlin sends 2w elements of S. Arthur picks a constant number of them and confirms they are all in S with one membership query each. Cost is O(w).
 - 2. Arthur ignores Merlin and solves the problem with $O(\sqrt{n/w})$ queries.

Theorem: Given $S \subseteq [n]$, for any QMA protocol for Approximate Counting that uses T queries to S and an m-qubit witness, either:

$$m \ge \Omega(w) \text{ or } T \ge \Omega(\sqrt{n/w}).$$

Corollary: An Oracle Separating SBP and QMA

SBP: Class of languages *L* for which there's a polytime randomized algorithm that, for some ε , accepts w.p. $\ge 2\varepsilon$ if $x \in L$, or w.p. $\le \varepsilon$ if $x \notin L$.



Problem that had been open: Is there an oracle relative to which

 $\textbf{SBP} \not\subset \textbf{QMA} ?$

Known oracle separations: coNP ⊄ QMA (easy) AM ⊄ PP (Vereshchagin'92) SZK ⊄ QMA (A. 2010)

Background on QMA lower bounds

- [Vyalyi 2003, Marriott and Watrous 2005]: Any QMA query protocol for a function f with proof length m and query cost T can be transformed into a (Merlin-less) quantum query protocol Q of cost O(mT) satisfying:
 - $f(x) = 1 \Longrightarrow \Pr[Q \text{ accepts } x] \ge 2^{-m}$
 - $f(x) = 0 \Longrightarrow \Pr[Q \text{ accepts } x] \le 2^{-m-1}$
- In complexity-theoretic terms, QMA \subseteq SBQP.

Background on QMA lower bounds

- [Vyalyi 2003, Marriott and Watrous 2005]: Any QMA query protocol for a function f with proof length m and query cost T can be transformed into a (Merlin-less) quantum query protocol Q of cost O(mT) satisfying:
 - $f(x) = 1 \Longrightarrow \Pr[Q \text{ accepts } x] \ge 2^{-m}$
 - $f(x) = 0 \Longrightarrow \Pr[Q \text{ accepts } x] \le 2^{-m-1}$
- In complexity-theoretic terms, $QMA \subseteq SBQP$.
- Major challenge to QMA lower bounds for $AC_{w,n}$:
 - $AC_{w,n}$ has a trivial SBP protocol Q of low cost.
 - Q picks a random $i \in [n]$, queries x_i , and accepts if $x_i=1$.

-
$$AC_{w,n}(x) = 1 \Longrightarrow Pr[Q \text{ accepts } x] \ge \frac{2v}{n}$$

-
$$AC_{w,n}(x) = 1 \Longrightarrow Pr[Q \text{ accepts } x] \le \frac{w}{n}$$

Getting To Know Approximate Counting and the Polynomial Method

The Approximate Degree of AC_{w,n} (Upper Bound)

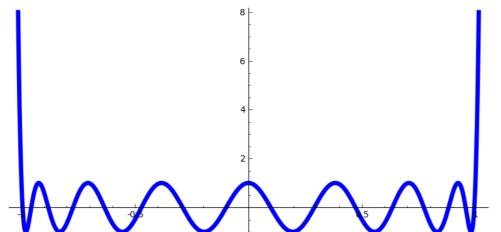
 $\widetilde{\operatorname{deg}}(\operatorname{AC}_{w,n}) = \Theta(\sqrt{n/w}).$

■ Upper bound: Use **Chebyshev Polynomials**.

■ Markov's Inequality: Let G(t) be a univariate polynomial s.t. $\deg(G) \le d$ and $\max_{t \in [-1,1]} |G(t)| \le 1$. Then

$$\max_{t \in [-1,1]} |G'(t)| \le d^2.$$

Chebyshev polynomials are the extremal case.



The Approximate Degree of AC_{w,n} (Upper Bound)

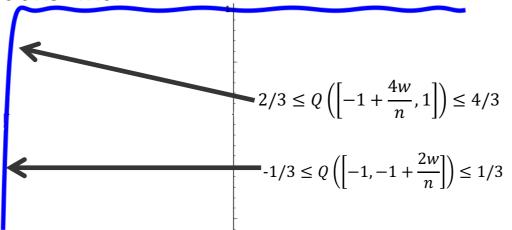
 $\widetilde{\operatorname{deg}}(\operatorname{AC}_{w,n}) = O(\sqrt{n/w}).$

After shifting and scaling, can turn degree O(\sqrt{n/w}) Chebyshev polynomial into a univariate polynomial Q(t) that looks like:

The Approximate Degree of AC_{w,n} (Upper Bound)

 $\widetilde{\operatorname{deg}}(\operatorname{AC}_{w,n}) = O(\sqrt{n/w}).$

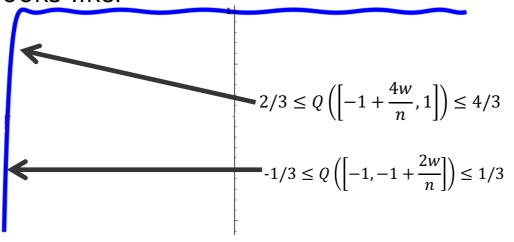
After shifting and scaling, can turn degree O(\sqrt{n/w}) Chebyshev polynomial into a univariate polynomial Q(t) that looks like:



The Approximate Degree of AC_{w.n} (Upper Bound)

 $\widetilde{\operatorname{deg}}(\operatorname{AC}_{w,n}) = O(\sqrt{n/w}).$

After shifting and scaling, can turn degree O(\sqrt{n/w}) Chebyshev polynomial into a univariate polynomial Q(t) that looks like:



- Define *n*-variate polynomial *p* via $p(x) = Q(\sum_{i=1}^{n} (1 2x_i)/n).$
- Then $|p(x) AC_{w,n}(x)| \le 1/3 \quad \forall x \in \{0,1\}^n$.

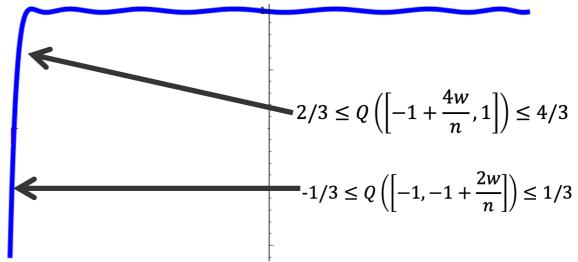
The Approximate Degree of AC_{w,n} (Lower Bound)

[NS92, NW98] $\widetilde{\operatorname{deg}}(\operatorname{AC}_{c,n}) = \Omega(\sqrt{n/w}).$

Lower bound: Use symmetrization.

• Suppose $|p(x) - AC_{w,n}(x)| \le 1/3 \quad \forall x \in \{0,1\}^n$.

There is a way to turn p into a <u>univariate</u> polynomial p^{sym} that looks like this:



• Claim 1: $\deg(p^{sym}) \le \deg(p)$.

Claim 2: Markov's inequality $\Longrightarrow \deg(p^{sym}) = \Omega(\sqrt{n/w}).$

What is p^{sym} ?

Theorem (Minsky and Papert, 1969): Given a polynomial $p(x_1, ..., x_n)$ of total degree d, there exists a degree d univariate polynomial p^{sym} such that for all integers i = 0, ..., n,

$$p^{\operatorname{sym}}\left(\frac{i}{n}\right) = \boldsymbol{E}_{|x|=i}[p(x)].$$

What is *p*^{sym}?

Theorem (Minsky and Papert, 1969): Given a polynomial $p(x_1, ..., x_n)$ of total degree d, there exists a degree d univariate polynomial p^{sym} such that for all integers i = 0, ..., n,

$$p^{\operatorname{sym}}\left(\frac{i}{n}\right) = \boldsymbol{E}_{|x|=i}[p(x)].$$

- Note: For inputs $j \in [0,1]$ that are **not** integer multiples of 1/n, $|p^{\text{sym}}(j)|$ can be as large as $2^{d^2/n}$ [Coppersmith Rivlin 1992, BuhrmanClevedeWolfZalka 1999].
 - Not a worry if the degree lower bound to be shown is no larger than \sqrt{n} , since then $2^{d^2/n} = O(1)$.

Summary: Quantum Query Lower Bound for AC_{w,n}

- 1. Start with any T-query quantum algorithm for $AC_{w,n}$.
- 2. Turn it into a degree-(2*T*) polynomial $p(x_1, ..., x_n)$ approximating $AC_{w,n}$.
- 3. Turn p into a degree- (2T) **univariate** polynomial p^{sym} that on input $\frac{i}{n}$ outputs p's average value on input sets S of size i.
- 4. Conclude that deg $(p^{\text{sym}}) \ge \Omega(\sqrt{n/w})$ and hence $T \ge \Omega(\sqrt{n/w})$.

Proof of Result 1: QMA Lower bound for AC_{w,n}

Laurent Polynomials

• Both of our results require generalizing the usual polynomial method to **Laurent polynomials**—although for different reasons in the two cases.

$$p(x) = 3x_{10}^{10} - x^4 + 1.5x + 7 - 2.2x^{-1} + x_{10}^{-5}$$
Degree 10
Antidegree 5

QMA Lower Bound Attack Plan

Recall Key Difficulty: All known techniques for putting black-box problems outside **QMA**, also put them outside the larger class **SBQP**. But clearly no **SBP** problem can be outside **SBQP**!

Key Idea of Thomas Watson: QMA is closed under intersection! So suppose **SBP** \subseteq **QMA**. Then for all L₁,L₂ \in **SBP**, we'd also have L₁ \cap L₂ \in **QMA** \subseteq **SBQP**.

Therefore, we just need to show that the AND of two black-box $AC_{w,n}$ instances is **not** in **SBQP**. This will contradict the assumption **SBP** \subseteq **QMA**.

• Thus, consider a **SBQP** algorithm for **two** approximate counting instances, on $S \subseteq [n]$ and $T \subseteq [n]$:

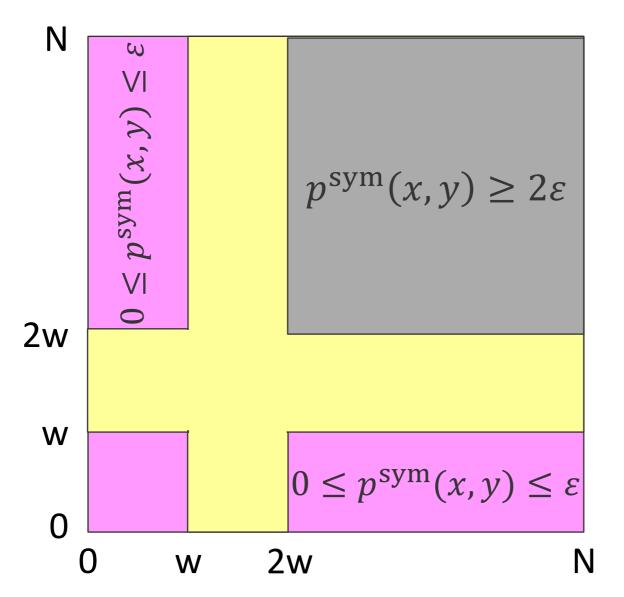
$$AC_{w,n}(S) \wedge AC_{w,n}(T)$$

• Let p(S,T) be its acceptance probability. After "double symmetrization," we get a bivariate real polynomial

$$p^{\text{sym}}(x, y) = \mathbf{E}_{|S|=x,|T|=y}[p(S, T)].$$

Note: WLOG $p^{\text{sym}}(x, y) = p^{\text{sym}}(y, x)$.

Underlying Polynomial Question



- Must lower-bound deg(p^{sym}) where p^{sym} is as shown on the left.
 - p^{sym} is obtained
 by applying
 Marriott-Watrous
 transformation to
 a QMA protocol

Idea: Restrict p^{sym} to a Hyperbola! Let $q(x) = \varepsilon^{-1} \cdot p^{\text{sym}}\left(2wx, \frac{2w}{x}\right)$. N $p^{\rm sym}(x,y)$ This is a univariate **Laurent** polynomial of degree and anti-degree $\leq \deg(p)$. $p^{\text{sym}}(x, y) \ge 2\varepsilon$ З 2ww $0 \le p^{\text{sym}}(x, y) \le \varepsilon$ 0 2w0 Nw

x

Idea: Restrict p^{sym} to a Hyperbola! Let $q(x) = \varepsilon^{-1} \cdot p^{\text{sym}} \left(2wx, \frac{2w}{v} \right)$. $p^{\text{sym}}(x,y) \leq$ This is a univariate Laurent polynomial of degree and anti-degree $\leq \deg(p)$. $p^{\text{sym}}(x, y) \ge 2\varepsilon$ $q(1) \geq 2.$ • For any $x \in [2, N/w], (2wx, \frac{2w}{r})$ is in the bottom-right box, so it seems like $|q(x)| \leq 1.$ **Problem**: We only have control $0 \le p^{\text{sym}}(x, y) \le \varepsilon$ of $p^{\text{sym}'s}$ values at **integer** inputs,

N

2w

w

S

2w

w

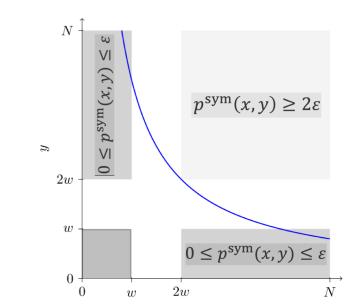
0

0

Summarizing Previous Slide

Let $q(x) = \varepsilon^{-1} p^{\text{sym}} \left(2wx, \frac{2w}{x} \right)$. This is a univariate Laurent polynomial in x of degree and anti-degree at most $d := \deg(p)$, such that:

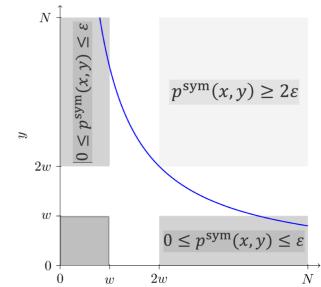
- $q(1) \ge 2.$
- For any $x \in [2, n/w], |q(x)| \le 1$.



Summarizing Previous Slide

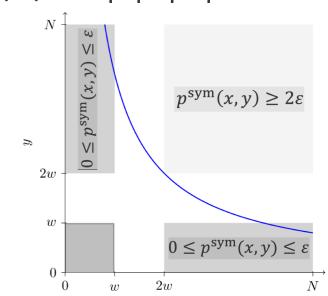
Let $q(x) = \varepsilon^{-1} p^{\text{sym}} \left(2wx, \frac{2w}{x} \right)$. This is a univariate Laurent polynomial in x of degree and anti-degree at most $d := \deg(p)$, such that:

- $q(1) \ge 2.$
- For any $x \in [2, n/w], |q(x)| \le 1$.
- If q were a standard polynomial of degree d, Markov's inequality would imply that $d \ge \sqrt{n/w}$.



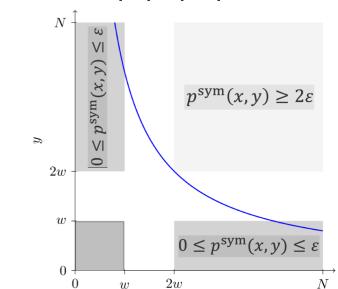
Change of Variable

- Next Key Lemma: $q(x) = \varepsilon^{-1} p^{\text{sym}} \left(2wx, \frac{2w}{x} \right)$ is actually a standard polynomial in (x + 1/x) of degree at most d.
- Proof:
 - Recall WLOG $p^{\text{sym}}(|S|, |T|)$ is symmetric in its two inputs.
 - The fundamental theorem of symmetric polynomials says: p^{sym} is a degree d polynomial in the elementary symmetric polynomials: |S| + |T| and $|S| \cdot |T|$.
 - But q is the restriction of p^{sym} to a hyperbola $\left(2wx, \frac{2w}{x}\right)$.
 - On which $|S| \cdot |T|$ is constant (i.e., $|S| \cdot |T| = 4 w^2$).



Change of Variable

- Next Key Lemma: $q(x) = \varepsilon^{-1} p^{\text{sym}} \left(2wx, \frac{2w}{x} \right)$ is actually a standard polynomial in (x + 1/x) of degree at most d.
- Proof:
 - Recall WLOG $p^{\text{sym}}(|S|, |T|)$ is symmetric in its two inputs.
 - The fundamental theorem of symmetric polynomials says: p^{sym} is a degree d polynomial in the elementary symmetric polynomials: |S| + |T| and $|S| \cdot |T|$.
 - But q is the restriction of p^{sym} to a hyperbola $\left(2wx, \frac{2w}{x}\right)$.
 - On which $|S| \cdot |T|$ is constant (i.e., $|S| \cdot |T| = 4 w^2$).
 - So q is actually a degree d polynomial in |S| + |T|.
 - On the hyperbola, |S| + |T| = 2w(x + 1/x).
 - So q is actually a degree d polynomial in (x + 1/x).



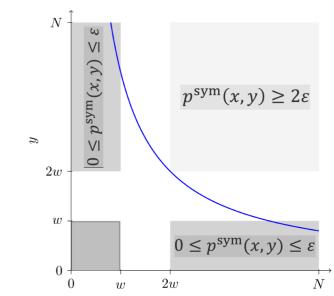
Completing the Argument

- **Recall:** $q(x) = \varepsilon^{-1} p^{\text{sym}} \left(2wx, \frac{2w}{x} \right)$ is actually a **standard** polynomial in (x + 1/x) of degree at most d.
- Let t = x + 1/x and r(t) = q(x). Then:

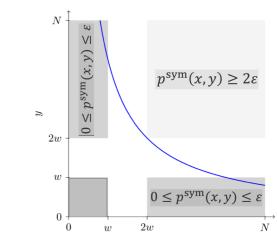
$$- \deg(r(t)) \le d$$

- $r(2) = \varepsilon^{-1} p^{\text{sym}}(2w, 2w) \ge 2$
- $|r(t)| \le 1 \text{ for all } t \in \left[2.5, \frac{n}{w} + \frac{w}{n}\right].$

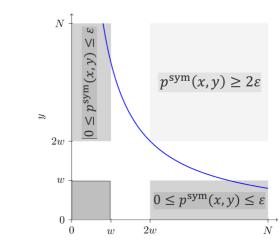
- Markov's inequality implies that $d \ge \sqrt{n/w}$.



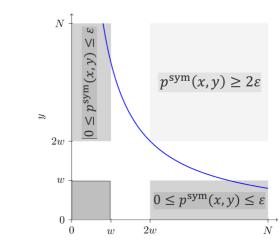
• **Problem**: We only have control of $p^{\text{sym}'s}$ values at **integer** inputs, and hence *q*'s values only at inputs 1 and 2.



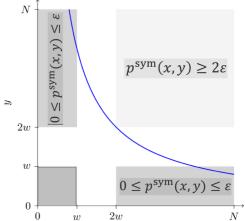
- **Problem**: We only have control of $p^{\text{sym}'s}$ values at **integer** inputs, and hence q's values only at inputs 1 and 2.
- Sketch of how to deal with this:
 - Recall that for integer inputs (x, y), $p^{\text{sym}}(x, y) = \mathbf{E}_{|S|=x,|T|=y}[p(S, T)]$.



- **Problem**: We only have control of $p^{sym's}$ values at **integer** inputs, and hence q's values only at inputs 1 and 2.
- Sketch of how to deal with this:
 - Replace p^{sym} with a different symmetrization of p that is bounded even at non-integer inputs, namely:



- **Problem**: We only have control of $p^{sym's}$ values at **integer** inputs, and hence q's values only at inputs 1 and 2.
- Sketch of how to deal with this:
 - Replace p^{sym} with a different symmetrization of p that is bounded even at non-integer inputs, namely:
 - $p_{\text{new}}^{\text{sym}}(x, y) = E_{S,T}[p(S, T)]$ where each coordinate of S and T are drawn iid such that the **expected values** of |S| and |T| are x and y.
 - Since p is bounded at all Boolean inputs $S, T, p_{new}^{sym}(x, y)$ is bounded at all inputs in $[0, n] \times [0, n]$ (even non-integers).



- **Problem**: We only have control of $p^{sym's}$ values at **integer** inputs, and hence q's values only at inputs 1 and 2.
- Sketch of how to deal with this:
 - Replace p^{sym} with a different symmetrization of p that is bounded even at non-integer inputs, namely:
 - $p_{new}^{sym}(x, y) = \mathbf{E}_{S,T}[p(S, T)]$ where each coordinate of S and T are drawn iid such that the **expected values** of |S| and |T| are x and y.
 - Since p is bounded at all Boolean inputs S, T, $p_{new}^{sym}(x, y)$ is bounded at all inputs in $[0, n] \times [0, n]$ (even non-integers). $0 \le p^{\text{sym}}(x, y)$

 $p^{\text{sym}}(x, y) \ge 2\varepsilon$

- Introduces a new problem:
 - We now have less control over $p_{new}^{sym's}$ behavior at integer inputs.

•
$$q(x) := p_{\text{new}}^{\text{sym}} \left(2wx, \frac{2w}{x} \right)$$
 may not have a "jump" between x=1 and x=2

Second Result: Quantum Algorithms That Can Sample From S

Sampling from S

- In applications, when trying to estimate the size of a set S ⊆ [n], often we can do more than make membership queries to S.
 - Often we can efficiently generate nearly uniform samples from S (e.g., via Markov Chain Monte Carlo).
 - If *S* is the set of perfect matchings in a bipartite graph [Jerrum, Sinclair, and Vigoda 2004].
 - Or the set of grid points in a high-dimensional convex body [Dyer, Frieze, and Kannan 1991].

Sampling from S

- In applications, when trying to estimate the size of a set S ⊆ [n], often we can do more than make membership queries to S.
- Question: If we can make membership queries to *S*, and sample uniformly from *S*, how efficiently can we solve AC_{*w*,*n*}?

Sampling from S

- In applications, when trying to estimate the size of a set S ⊆ [n], often we can do more than make membership queries to S.
- Question: If we can make membership queries to S, and sample uniformly from S, how efficiently can we solve AC_{w,n}?
- CLASSICAL SOLUTIONS
 - O(n/w) classical membership queries to S
 - Randomly pick universe elements and see if any are in *S*
 - $O(\sqrt{w})$ classical samples from S
 - Birthday Paradox: sample from *S* and see if any two samples are the same.

• Suppose the quantum algorithm is also given copies of the state:

$$S \rangle \coloneqq \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle$$

 Models situations where S can be efficiently "QSampled" (Aharonov & Ta-Shma 2003)

• Suppose the quantum algorithm is also given copies of the state:

$$|S\rangle \coloneqq \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle$$

- Models situations where S can be efficiently "QSampled" (Aharonov & Ta-Shma 2003)
 - Many interesting sets can be efficiently QSampled, including perfect matchings [JSV04] and grid points in convex bodies [DFK91].
 - All problems in SZK can be efficiently reduced to some instance of QSampling.

• Suppose the quantum algorithm is also given copies of the state:

$$|S\rangle \coloneqq \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle$$

- Models situations where S can be efficiently "QSampled" (Aharonov & Ta-Shma 2003)
- Then known quantum query lower bounds no longer apply.

• Suppose the quantum algorithm is also given copies of the state:

$$|S\rangle \coloneqq \frac{1}{\sqrt{|S|}} \sum_{i \in S} |i\rangle$$

- Models situations where S can be efficiently "QSampled" (Aharonov & Ta-Shma 2003)
- Then known quantum query lower bounds no longer apply.
 - All the more so if the algorithm can also query an oracle that reflects about $|S\rangle$: i.e., can apply the unitary transformation $U = I 2|S\rangle\langle S|$.
 - The ability to perform **reflect** about $|S\rangle$ follows in a black-box way from the ability to prepare the state $|S\rangle$ unitarily.

Upper Bounds

Recall: We can decide whether $|S| \le w$ or $|S| \ge 2w$ using:

CLASSICAL SOLUTIONS

- 1. T = O(n/w) classical membership queries to S
- 2. $R = O(\sqrt{w})$ classical samples from S

Upper Bounds

Recall: We can decide whether $|S| \le w$ or $|S| \ge 2w$ using:

CLASSICAL SOLUTIONS

1. T = O(n/w) classical membership queries to S

2. $R = O(\sqrt{w})$ classical samples from S

QUANTUM SOLUTIONS

1. $T = O(\sqrt{n/w})$ quantum membership queries to S (BHT 1998)

Upper Bounds

Recall: We can decide whether $|S| \le w$ or $|S| \ge 2w$ using:

CLASSICAL SOLUTIONS

1. T = O(n/w) classical membership queries to S

2. $R = O(\sqrt{w})$ classical samples from S

QUANTUM SOLUTIONS

1. $T = O(\sqrt{n/w})$ quantum membership queries to S (BHT 1998)

2. $R = O\left(\min\left(\sqrt{n/w}, w^{1/3}\right)\right)$ copies of $|S\rangle$ and reflections

- $O(\sqrt{n/w})$: project $|S\rangle$ onto $|1\rangle + \cdots + |N\rangle$ and do amplitude amplification
- $O(w^{1/3})$: Use "quantum collision" algorithm (BHT 1998) in a new way

Our Result

Theorem: Given $S \subseteq [n]$, any quantum algorithm that solves $AC_{w,n}$ using T queries to S as well as R copies of $|S\rangle$ and reflections about $|S\rangle$, requires either:

$$T = \Omega(\sqrt{n/w}) \text{ or } R = \Omega(\min(\sqrt{n/w}, w^{1/3}))$$

Proof of Lower Bound for Quantum Query+QSampling Algorithms for AC_{w,n}

Recall Result 1

Theorem: Given $S \subseteq [n]$, any quantum algorithm to decide whether $|S| \le w$ or $|S| \ge 2w$, using T queries to S as well as R copies of $|S\rangle$ and reflections about $|S\rangle$, requires either:

$$T = \Omega(\sqrt{n/w}) \text{ or } R = \Omega(\min(\sqrt{n/w}, w^{1/3}))$$

Let q(k) be its acceptance probability, averaged over all $S \subseteq [n]$, with |S| = k. Then q(k) is a Laurent polynomial of degree $\leq 2(T + R)$ and antidegree $\leq R$.

Let q(k) be its acceptance probability, averaged over all $S \subseteq [n]$, with |S| = k. Then q(k) is a Laurent polynomial of degree $\leq 2(T + R)$ and antidegree $\leq R$.

Let q(k) be its acceptance probability, averaged over all $S \subseteq [n]$, with |S| = k. Then q(k) is a Laurent polynomial of degree $\leq 2(T + R)$ and antidegree $\leq R$.

- The probability of getting ordered sample is $\{i_1, \dots, i_R\}$ is $\frac{1}{|S|^R} x_{i_1} \cdots x_{i_R}$.
- This is a degree-*R* polynomial in *x*, weighted by $\frac{1}{|S|^R}$.

Let q(k) be its acceptance probability, averaged over all $S \subseteq [n]$, with |S| = k. Then q(k) is a Laurent polynomial of degree $\leq 2(T + R)$ and antidegree $\leq R$.

- The probability of getting ordered sample is $\{i_1, \dots, i_R\}$ is $\frac{1}{|S|^R} x_{i_1} \cdots x_{i_R}$.
- This is a degree-*R* polynomial in *x*, weighted by $\frac{1}{|S|^R}$.
- So probability of reaching any particular leaf is a degree-(R + T) polynomial in x, weighted by $\frac{1}{|S|^R}$.

Let q(k) be its acceptance probability, averaged over all $S \subseteq [n]$, with |S| = k. Then q(k) is a Laurent polynomial of degree $\leq 2(T + R)$ and antidegree $\leq R$.

- The probability of getting ordered sample is $\{i_1, \dots, i_R\}$ is $\frac{1}{|S|^R} x_{i_1} \cdots x_{i_R}$.
- This is a degree-*R* polynomial in *x*, weighted by $\frac{1}{|S|^R}$.
- So probability of reaching any particular leaf is a degree-(R + T) polynomial in x, weighted by $\frac{1}{|S|^R}$.
- Symmetrize this polynomial to get a degree-(R + T) univariate polynomial in |S|, with weights proportional to $\frac{1}{|S|^R}$.
- This is a **Laurent** polynomial with the degree (R + T) and anti-degree R.

Underlying Polynomial Question

Suppose
$$p(k) = g(k) + h\left(\frac{1}{k}\right)$$
 g, h univariate
real polynomials
 $0 \le p(k) \le 1$ for $k \in \{1, ..., n\}$
 $p(w) \le \frac{1}{3}, \quad p(2w) \ge \frac{2}{3}$

Must Show: Either

$$\deg(g) = \Omega\left(\sqrt{\frac{n}{w}}\right)$$
 or $\deg(h$

$$\deg(h) = \Omega(w^{1/4})$$

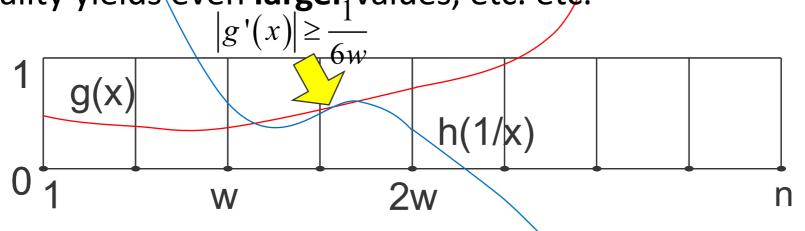
"Explosion Argument"

- Either g or h must have a large derivative somewhere.
- If it's low-degree, that means it takes large values (Markov).
- But $g(k) + h\left(\frac{1}{k}\right) \in [0,1]$ for all $k \in \{1, ..., n\}$.
- So the **other** polynomial must take large values of the opposite sign!
- When switching from g to h, the x-axis gets compressed, so Markov's inequality yields even **larger** values, etc. etc.

• But polynomials that grow without bound, on a compact set like [1, n] can never have existed in the first place

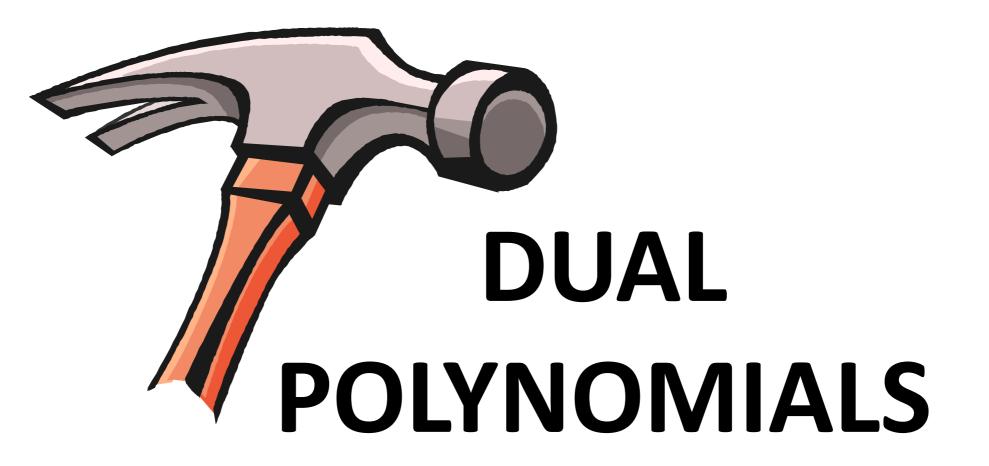
"Explosion Argument"

- Either g or h must have a large derivative somewhere.
- If it's low-degree, that means it takes large values (Markov).
- But $g(k) + h\left(\frac{1}{k}\right) \in [0,1]$ for all $k \in \{1, ..., n\}$.
- So the **other** polynomial must take large values of the opposite sign!
- When switching from g to h, the x-axis gets compressed, so Markov's inequality yields even **larger**₁ values, etc. etc.



• But polynomials that grow without bound, on a compact set like [1, n] can never have existed in the first place

Tightening the $\Omega(w^{1/4})$ to $\Omega(w^{1/3})$



Open Problems

- "Deep explanation" for why Laurent polynomials show up?
- Other applications of the Laurent polynomial method?
 - Kretschmer, recently: Simpler proof of ~√N lower bound on approximate degree of AND-OR tree!
- Complexity of Approximate Counting with Queries+QSamples but not reflections?
- Lower-bound number of uses of a $|0\rangle \leftrightarrow |S\rangle$ oracle?
- Is there a "real-world" (non-black-box) scenario where membership queries and QSampling are both easy, but approximate counting is hard?