
Justin Thaler (Georgetown University)
with Scott Aaronson, Robin Kothari, William Kretschmer

Quantum Lower Bounds Via
Laurent Polynomials

Query complexity
Let !: 0,1 & → 0,1 be a function and (∈ {0,1}& be an input to !.

Goal: Compute !(() by reading as few bits of (as possible.

(1 (2 (3 (0⋯

Query complexity
Let !: 0,1 & → 0,1 be a function and (∈ {0,1}& be an input to !.

Goal: Compute !(() by reading as few bits of (as possible.

(1 (2 (3 (0⋯

(2

(3 (4

(3 (51 0

0 1 1 0

Query complexity
Let !: 0,1 & → 0,1 be a function and (∈ {0,1}& be an input to !.

Goal: Compute !(() by reading as few bits of (as possible.

Quantum Query Complexity: Algorithm can query bits of (in superposition, must output

!(() with probability at least 2/3.

(1 (2 (3 (0⋯

Query complexity
Let !: 0,1 & → 0,1 be a function and (∈ {0,1}& be an input to !.

Goal: Compute !(() by reading as few bits of (as possible.

Quantum Query Complexity: Algorithm can query bits of (in superposition, must output

!(() with probability at least 2/3.

(1 (2 (3 (0⋯

Example: Let OR& (= ⋁678& (6 and AND& (= ⋀678& (6.
Then = OR& = = AND& = Θ 0 [Grover96, Bennett-Bernstein-Brassard-Vazirani97]

Classically, we need Θ 0 queries for both problems.

Why query complexity?
Complexity theoretic motivation

• We can prove statements about the power of different computational models!
(E.g., exponential separation between classical and quantum algorithms)

• Oracle separations between classes, lower bounds on restricted models, upper and lower
bounds in communication complexity, circuit complexity, data structures, etc.

Algorithmic motivation
• Algorithms often transfer to the circuit model, while the abstraction of query complexity

often gets rid of unnecessary details.
• Most quantum algorithms are naturally phrased as query algorithms. E.g., Shor, Grover,

Hidden Subgroup, Linear systems (HHL), etc.

Lower bounds on quantum query complexity
Positive-weights adversary method [Ambainis]

Easy to use, but has many limitations. Cannot
show any of the results of our work.

Negative-weights adversary method [HLS07]

Equals (up to constants) quantum query
complexity, but difficult to use.

Polynomial method

• Equals (up to constants) quantum query complexity for many natural functions.
• Can show lower bounds for algorithms with unbounded error, small error, and no error.
• Works when the positive-weights adversary fails (e.g., the collision problem).
• Can imply lower bounds for more powerful models than quantum query complexity:
• Lower bounds “lift” to quantum communication lower bounds [She08, SZ09]
• This work: Extensions to lower bound “super-powerful” query/communication models.

Lower bounds on quantum query complexity

Polynomial method

• Equals (up to constants) quantum query complexity for many natural functions.
• Can show lower bounds for algorithms with unbounded error, small error, and no error.
• Works when the positive-weights adversary fails (e.g., the collision problem).
• Can imply lower bounds for more powerful models than quantum query complexity:
• “Lifts” to quantum communication lower bounds [She08, SZ09]
• This work: Extensions to lower bound “super-powerful” query/communication models.

Positive-weights adversary method [Ambainis]

Easy to use, but has many limitations. Cannot
show any of the results of our work.

Negative-weights adversary method [HLS07]

Equals (up to constants) quantum query
complexity, but difficult to use.

Lower bounds on quantum query complexity

Polynomial method

• Equals (up to constants) quantum query complexity for many natural functions.
• Can show lower bounds for algorithms with unbounded error, small error, and no error.
• Works when the positive-weights adversary fails (e.g., the collision problem).
• Can imply lower bounds for more powerful models than quantum query complexity:
• “Lifts” to quantum communication lower bounds [She08, SZ09]

Positive-weights adversary method [Ambainis]

Easy to use, but has many limitations. Cannot
show any of the results of our work.

Negative-weights adversary method [HLS07]

Equals (up to constants) quantum query
complexity, but difficult to use.

The Polynomial Method For Quantum Query Lower Bounds

Approximate degree: Minimum degree of a polynomial !(#$, … , #') with real
coefficients such that ∀# ∈ 0,1 ', - # − ! # ≤ 1/3.

2deg(-)

2deg OR' = 2deg = Θ : ; OR' = ; = Θ :

The Polynomial Method For Quantum Query Lower Bounds

Approximate degree: Minimum degree of a polynomial !(#$, … , #') with real
coefficients such that ∀# ∈ 0,1 ', - # − ! # ≤ 1/3.

2deg(-)

Theorem ([Beals-Buhrman-Cleve-Mosca-de Wolf01]): For any -,
6 - ≥ $

8
2deg(-)

2deg OR' = 2deg = Θ = 6 OR' = 6 = Θ =

• For any T-query quantum algorithm >, there is a polynomial ! of degree 2T such that:
• For all # ∈ 0,1 ', !(#) equals the probability that > outputs 1 on input #.

Approximate degree and the Polynomial Method
• For any T-query quantum algorithm !, there is a polynomial " of degree 2T such that:

• For all # ∈ 0,1 (, "(#) equals the probability that ! outputs 1 on input #.

#+

#, #-

#, #.1 0

0 1 1 0

• Given ! ∈ {0,1}(, let) = {+ ∶ !- = 1}.

• Quantum Upper Bound (Brassard-Høyer-Tapp 1998): Grover + quantum
phase estimation (or just Grover…)

• Quantum Lower Bound (Nayak-Wu 1998): Proven via polynomial method

Approximate Counting

Approximate counting problem (AC0,((!)): Determine whether |)| ≤ 5 or |)| ≥
25, promised that one of these is the case.

8 9/58 9/5
Randomized query complexity: Quantum query complexity:

First Result:
QMA Protocols For

Approximate Counting

QMA Protocol for Approximate Counting?
• In a QMA query protocol for !, Merlin knows the input " but Arthur does not.
• Merlin claims that ! " = 1, and sends Arthur a proof | ⟩' attesting to this.
| ⟩' is an arbitrary (-qubit message.

• After receiving | ⟩' , Arthur queries at most) bits of the input in superposition.
• Completeness and soundness must hold.

– ! " = 1⟹ there exists a | ⟩' causing Arthur to accept with probability at least 2/3
– ! " = 0⟹ for all possible proofs | ⟩' , Arthur rejects with probability at least 2/3.

• Cost of a solution is the length (of the witness plus number of membership
queries by Arthur.

QMA Protocol for Approximate Counting?
• In a QMA query protocol for !, Merlin knows the input " but Arthur does not.
• Merlin claims that ! " = 1, and sends Arthur a proof | ⟩' attesting to this.
| ⟩' is an arbitrary (-qubit message.

• After receiving | ⟩' , Arthur queries at most) bits of the input in superposition.
• Completeness and soundness must hold.

– ! " = 1⟹ there exists a | ⟩' causing Arthur to accept with probability at least 2/3
– ! " = 0⟹ for all possible proofs | ⟩' , Arthur rejects with probability at least 2/3.

• Cost of a protocol is the length (+).

QMA Protocol for Approximate Counting?
• In a QMA query protocol for !, Merlin knows the input " but Arthur does not.
• Merlin claims that ! " = 1, and sends Arthur a proof | ⟩' attesting to this.
| ⟩' is an arbitrary (-qubit message.

• After receiving | ⟩' , Arthur queries at most) bits of the input in superposition.
• Is there an efficient QMA protocol for Approximate Counting?

– i.e., Arthur is promised that either |*| ≤ , or |*| ≥ 2,, and Merlin wants to prove
that |*| ≥ 2,.

– “Efficient” means cost polylog(/).

• Obvious solutions:
1. Merlin sends 2, elements of *. Arthur picks a constant number of them and confirms

they are all in * with one membership query each. Cost is 1 , .
2. Arthur ignores Merlin and solves the problem with 1 //, queries

QMA Protocol for Approximate Counting?
• In a QMA query protocol for !, Merlin knows the input " but Arthur does not.
• Merlin claims that ! " = 1, and sends Arthur a proof | ⟩' attesting to this.
| ⟩' is an arbitrary (-qubit message.

• After receiving | ⟩' , Arthur queries at most) bits of the input in superposition.
• Is there an efficient QMA protocol for Approximate Counting?

– i.e., Arthur is promised that either |*| ≤ , or |*| ≥ 2,, and Merlin wants to prove
that |*| ≥ 2,.

• Obvious solutions:
1. Merlin sends 2, elements of *. Arthur picks a constant number of them and confirms

they are all in * with one membership query each. Cost is 0 , .
2. Arthur ignores Merlin and solves the problem with 0 1/, queries.

Theorem: Given ! ⊆ # , for any QMA protocol for Approximate
Counting that uses $ queries to ! and an %-qubit witness, either:

% ≥ Ω()) or $ ≥ Ω #/) .

Our Result

Corollary: If) ≥ ,-/. then the cost of any QMA protocol for Approximate
Counting is at least ,/). That is, the most efficient protocol is for Arthur to
ignore Merlin and just solve the problem with ,/) queries. Merlin is totally

useless.

SBP: Class of languages ! for which there’s a polytime randomized algorithm
that, for some ", accepts w.p. ≥ 2" if % ∈ !, or w.p. ≤ " if % ∉ !.

Problem that had been
open: Is there an oracle
relative to which

Known oracle separations:
coNP Ë QMA (easy)

AM Ë PP (Vereshchagin’92)
SZK Ë QMA (A. 2010)

SZK

Quantum
version of SBP

SBP Ë QMA ?

Corollary: An Oracle Separating SBP and QMA

Background on QMA lower bounds
• [Vyalyi 2003, Marriott and Watrous 2005]: Any QMA query protocol for a

function ! with proof length " and query cost # can be transformed into a
(Merlin-less) quantum query protocol $ of cost % "# satisfying:

– ! & = 1 ⟹ Pr $ accepts & ≥ 245

– ! & = 0 ⟹ Pr $ accepts & ≤ 24548

• In complexity-theoretic terms, QMA ⊆ SBQP.

• Major challenge to QMA lower bounds for AC<,>:

– AC<,> has a trivial SBP protocol $ of low cost.
– $ picks a random ? ∈ A , queries &B, and accepts if &B=1.

– AC<,> & = 1 ⟹ Pr $ accepts & ≥ C<
>

– AC<,> & = 1 ⟹ Pr $ accepts & ≤ <
>

Background on QMA lower bounds
• [Vyalyi 2003, Marriott and Watrous 2005]: Any QMA query protocol for a

function ! with proof length " and query cost # can be transformed into a
(Merlin-less) quantum query protocol $ of cost % "# satisfying:

– ! & = 1 ⟹ Pr $ accepts & ≥ 245

– ! & = 0 ⟹ Pr $ accepts & ≤ 24548

• In complexity-theoretic terms, QMA ⊆ SBQP.

• Major challenge to QMA lower bounds for AC<,>:

– AC<,> has a trivial SBP protocol $ of low cost.
– $ picks a random ? ∈ A , queries &B, and accepts if &B=1.

– AC<,> & = 1 ⟹ Pr $ accepts & ≥ C<
>

– AC<,> & = 1 ⟹ Pr $ accepts & ≤ <
>

The Approximate Degree of ACw,n (Upper Bound)Example: What is the Approximate Degree of ACw,n?

gdeg(ACw,n) = ⇥(
p
n/w).

Upper bound: Use Chebyshev Polynomials.

Markov’s Inequality: Let G(t) be a univariate polynomial s.t.
deg(G) d and maxt2[�1,1] |G(t)| 1. Then

max
t2[�1,1]

|G0
(t)| d

2
.

Chebyshev polynomials are the extremal case.

Example: What is the Approximate Degree of ACw,n?

gdeg(ACw,n) = O(
p
n/w).

After shifting and scaling, can turn degree O(
p
n/w)

Chebyshev polynomial into a univariate polynomial Q(t) that
looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via
p(x) = Q(

P
n

i=1(1� 2xi)/n).

Then |p(x)�ACw,n(x)| 1/3 8x 2 {0, 1}n.

The Approximate Degree of ACw,n (Upper Bound)

Example: What is the Approximate Degree of ACw,n?

gdeg(ACw,n) = O(
p
n/w).

After shifting and scaling, can turn degree O(
p
n/w)

Chebyshev polynomial into a univariate polynomial Q(t) that
looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via
p(x) = Q(

P
n

i=1(1� 2xi)/n).

Then |p(x)�ACw,n(x)| 1/3 8x 2 {0, 1}n.

2/3 ≤ % −1 + 4*+ , 1 ≤ 4/3

-1/3 ≤ & −1,−1 + 2+, ≤ 1/3

The Approximate Degree of ACw,n (Upper Bound)

Example: What is the Approximate Degree of ACw,n?

gdeg(ACw,n) = O(
p
n/w).

After shifting and scaling, can turn degree O(
p
n/w)

Chebyshev polynomial into a univariate polynomial Q(t) that
looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via
p(x) = Q(

P
n

i=1(1� 2xi)/n).

Then |p(x)�ACw,n(x)| 1/3 8x 2 {0, 1}n.

2/3 ≤ % −1 + 4*+ , 1 ≤ 4/3

-1/3 ≤ & −1,−1 + 2+, ≤ 1/3

The Approximate Degree of ACw,n (Upper Bound)

The Approximate Degree of ACw,n (Lower Bound)Example: What is the Approximate Degree of ACw,n?

[NS92, NW98] gdeg(ACc,n) = ⌦(
p

n/w).

Lower bound: Use symmetrization.

Suppose |p(x)�ACw,n(x)| 1/3 8x 2 {0, 1}n.
There is a way to turn p into a univariate polynomial psym

that looks like this:

!"#$%&'()*+*&',*

Claim 1: deg(psym) deg(p).

Claim 2: Markov’s inequality =) deg(p
sym

) = ⌦(
p

n/w).

The Approximate Degree of ACw,n
Example: What is the Approximate Degree of ACw,n?

gdeg(ACw,n) = O(
p
n/w).

After shifting and scaling, can turn degree O(
p
n/w)

Chebyshev polynomial into a univariate polynomial Q(t) that
looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via
p(x) = Q(

P
n

i=1(1� 2xi)/n).

Then |p(x)�ACw,n(x)| 1/3 8x 2 {0, 1}n.

What is !"#$?

Theorem (Minsky and Papert, 1969): Given a polynomial !(&', … , &*) of
total degree ,, there exists a degree , univariate polynomial !"#$ such
that for all integers - = 0,… , 0,

!"#$ 1
* = 2 3 41[! &].

• Note: For inputs 7 that are not integer multiples of 1/0, |!"#$ 7 | can
be as large as 2<=/* [Coppersmith-Rivlin 1992, Buhrman-Cleve-de-Wolf-Zalka 1999]

What is !"#$?

Theorem (Minsky and Papert, 1969): Given a polynomial !(&', … , &*) of
total degree ,, there exists a degree , univariate polynomial !"#$ such
that for all integers - = 0,… , 0,

!"#$ 1
* = 2 3 41[! &].

• Note: For inputs 7 ∈ [0,1] that are not integer multiples of 1/0,
|!"#$ 7 | can be as large as 2=>/* [Coppersmith Rivlin 1992,
BuhrmanClevedeWolfZalka 1999].

• Not a worry if the degree lower bound to be shown is no larger than 0, since then
2=>/* = ? 1 .

Summary: Quantum Query Lower Bound for AC#,%
1. Start with any &-query quantum algorithm for AC#,%.
2. Turn it into a degree-(2&) polynomial) *+, … , *% approximating
AC#,%.

3. Turn) into a degree- (2&) univariate polynomial)-./ that on
input 0% outputs)’s average value on input sets 1 of size 2.

4. Conclude that deg()-./) ≥ Ω(:/<) and hence & ≥ Ω(:/<).

Proof of Result 1: QMA Lower
bound for

() 10 4 1 53 1.5 7 2.2p x x x x x x- -= - + + - +

Degree 10 Antidegree 5

Laurent Polynomials
• Both of our results require generalizing the usual polynomial method to

Laurent polynomials—although for different reasons in the two cases.

QMA Lower Bound Attack Plan
Recall Key Difficulty: All known techniques for putting black-box problems
outside QMA, also put them outside the larger class SBQP. But clearly no
SBP problem can be outside SBQP!

Key Idea of Thomas Watson: QMA is closed under intersection! So suppose
SBPÍQMA. Then for all L1,L2ÎSBP, we’d also have L1ÇL2ÎQMAÍSBQP.

Therefore, we just need to show that the AND of two black-box
AC#,% instances is not in SBQP. This will contradict the assumption
SBPÍQMA.

• Thus, consider a SBQP algorithm for two approximate
counting instances, on ! ⊆ [$] and & ⊆ $:

• Let ((!, &) be its acceptance probability. After “double
symmetrization,” we get a bivariate real polynomial

Ù

(,-. /, 0 = 2 3 45, 6 47[(!, &].
Note: WLOG (,-. /, 0 = (,-. 0, / .

ACw,n(S) ACw,n(T)

Underlying Polynomial Question
• Must lower-bound
deg(%&'() where
%&'(is as shown
on the left.

• %&'(is obtained
by applying
Marriott-Watrous
transformation to
a QMA protocol

0 w 2w N

N

2w

w

0
0 ≤ %&'((,, .) ≤ /

0
≤
%&
'(
(,
,.
)≤

/
%&'(,, . ≥ 2/

Idea: Restrict !"#$ to a Hyperbola!
Let % & = ()* + !"#$ 2-&, /01 .
This is a univariate Laurent polynomial
of degree and anti-degree ≤ deg ! .
• % 1 ≥ 2.
• For any & ∈ [2, ;/-], 2-&, /01 is in

the bottom-right box, so it seems like
% & ≤1.

• Problem: We only have control
of !"#$>? values at integer inputs,
and hence %’s values only at inputs 1
and 2. Let’s ignore for now.

Idea: Restrict !"#$ to a Hyperbola!
Let % & = ()* + !"#$ 2-&, /01 .
This is a univariate Laurent polynomial
of degree and anti-degree ≤ deg ! .
• % 1 ≥ 2.
• For any & ∈ [2, ;/-], 2-&, /01 is in

the bottom-right box, so it seems like
% & ≤1.

• Problem: We only have control
of !"#$>? values at integer inputs,
and hence %’s values only at inputs 1
and 2. Let’s ignore for now.

Summarizing Previous Slide
Let ! " = $%& '()* 2,", ./0 . This is a univariate Laurent polynomial in
" of degree and anti-degree at most 2:= deg ' , such that:

– ! 1 ≥ 2.
– For any " ∈ [2, ;/,], ! " ≤ 1.

• If ! were a standard polynomial of degree 2, Markov’s inequality would
imply that 2 ≥ ?/,.

Summarizing Previous Slide
Let ! " = $%& '()* 2,", ./0 . This is a univariate Laurent polynomial in
" of degree and anti-degree at most 2:= deg ' , such that:

– ! 1 ≥ 2.
– For any " ∈ [2, ;/,], ! " ≤ 1.

• If ! were a standard polynomial of degree 2, Markov’s inequality would
imply that 2 ≥ ;/,.

Change of Variable
• Next Key Lemma: ! " = $%& '()* 2,", ./0 is actually a standard

polynomial in (" + 1/") of degree at most 6.
• Proof:

– Recall WLOG '()* |8|, |9| is symmetric in its two inputs.
– The fundamental theorem of symmetric polynomials says: '()* is a degree 6

polynomial in the elementary symmetric polynomials: 8 + 9 and |8| : | 9|.
– But ! is the restriction of '()* to a hyperbola 2,", ./0 .

• On which |8| : 9 is constant (i.e., 8 : 9 = 4 ,.).

– So ! is actually a degree 6 polynomial in 8 + 9 .
– On the hyperbola, 8 + 9 = 2,(" + 1/").
– So ! is actually a degree 6 polynomial in (" + 1/").

Change of Variable
• Next Key Lemma: ! " = $%& '()* 2,", ./0 is actually a standard

polynomial in (" + 1/") of degree at most 6.
• Proof:

– Recall WLOG '()* |8|, |9| is symmetric in its two inputs.
– The fundamental theorem of symmetric polynomials says: '()* is a degree 6

polynomial in the elementary symmetric polynomials: 8 + 9 and |8| : | 9|.
– But ! is the restriction of '()* to a hyperbola 2,", ./0 .

• On which |8| : 9 is constant (i.e., 8 : 9 = 4 ,.).

– So ! is actually a degree 6 polynomial in 8 + 9 .
– On the hyperbola, 8 + 9 = 2,(" + 1/").
– So ! is actually a degree 6 polynomial in (" + 1/").

Completing the Argument
• Recall: !(#)= %&' ()*+ 2-#, /01 is actually a standard

polynomial in (# + 1/#) of degree at most 5.

• Let 6 = # + 1/# and 8 6 = ! # . Then:
– deg(8 6) ≤ 5
– 8 2 = %&' ()*+ 2-, 2- ≥ 2
– 8 6 ≤ 1 for all 6 ∈ 2.5, A0 +

0
A .

– Markov’s inequality implies that 5 ≥ B/-.

Addressing the Ignored Issue
• Problem: We only have control of !"#$%

& values at integer inputs, and hence
'’s values only at inputs 1 and 2.

• Sketch of how to deal with this:
– Recall that for integer inputs (), +), !"#$), + = . / 01, 2 03[! 5, 6].
– Introduces a new problem:

•We	now	have	less control	over	!MNO
"#$%

& behavior	at integer	inputs.

• ') := !MNO
"#$

2T),
UV

1
may not have a ”jump” between x=1 and x=2.

Addressing the Ignored Issue
• Problem: We only have control of !"#$%

& values at integer inputs, and hence
'’s values only at inputs 1 and 2.

• Sketch of how to deal with this:
– Recall that for integer inputs (), +), !"#$), + = . / 01, 2 03[! 5, 6].
– Introduces a new problem:

•We	now	have	less control	over	!MNO
"#$%

& behavior	at integer	inputs.

• ') := !MNO
"#$

2T),
UV

1
may not have a ”jump” between x=1 and x=2.

Addressing the Ignored Issue
• Problem: We only have control of !"#$%& values at integer inputs, and hence
'’s values only at inputs 1 and 2.

• Sketch of how to deal with this:
– Replace !"#$ with a different symmetrization of ! that is bounded even

at non-integer inputs, namely:
• !()*

"#$ +, - = /0,1[! 3, 4] where each coordinate of 3 and 4 are
drawn iid such that the expected values of |3| and |4| are + and -.

• Since ! is bounded at all Boolean inputs 3, 4, !()*
"#$(+, -) is bounded at

all inputs in 0, : ×[0, :] (even non-integers).
– Introduces a new problem:

•We	now	have	less control	over	!()*
"#$%& behavior	at integer	inputs.

• ' + := !()*
"#$ 2U+,

VW
X

may not have a ”jump” between x=1 and x=2.

Addressing the Ignored Issue
• Problem: We only have control of !"#$%& values at integer inputs, and hence
'’s values only at inputs 1 and 2.

• Sketch of how to deal with this:
– Replace !"#$ with a different symmetrization of ! that is bounded even

at non-integer inputs, namely:
• !()*

"#$ +, - = /0,1[! 3, 4] where each coordinate of 3 and 4 are
drawn iid such that the expected values of |3| and |4| are + and -.

• Since ! is bounded at all Boolean inputs 3, 4, !()*
"#$(+, -) is bounded at

all inputs in 0, : ×[0, :] (even non-integers).
– Introduces a new problem:

•We	now	have	less control	over	!()*
"#$%& behavior	at integer	inputs.

• ' + := !()*
"#$ 2U+,

VW
X

may not have a ”jump” between x=1 and x=2.

Addressing the Ignored Issue
• Problem: We only have control of !"#$%& values at integer inputs, and hence
'’s values only at inputs 1 and 2.

• Sketch of how to deal with this:
– Replace !"#$ with a different symmetrization of ! that is bounded even

at non-integer inputs, namely:
• !()*

"#$ +, - = /0,1[! 3, 4] where each coordinate of 3 and 4 are
drawn iid such that the expected values of |3| and |4| are + and -.

• Since ! is bounded at all Boolean inputs 3, 4, !()*
"#$(+, -) is bounded at

all inputs in 0, : ×[0, :] (even non-integers).
– Introduces a new problem:

•We	now	have	less control	over	!()*
"#$%& behavior	at integer	inputs.

• ' + := !()*
"#$ 2U+,

VW
X

may not have a ”jump” between x=1 and x=2

Second Result:
Quantum Algorithms That Can

Sample From S

• In applications, when trying to estimate the size of a set ! ⊆ # , often we
can do more than make membership queries to !.
– Often we can efficiently generate nearly uniform samples from ! (e.g., via

Markov Chain Monte Carlo).
• If ! is the set of perfect matchings in a bipartite graph [Jerrum, Sinclair, and Vigoda 2004].

• Or the set of grid points in a high-dimensional convex body [Dyer, Frieze, and Kannan 1991].

Sampling from S

• In applications, when trying to estimate the size of a set ! ⊆ # , often we
can do more than make membership queries to !.

• Question: If we can make membership queries to !, and sample uniformly
from !, how efficiently can we solve AC',(?

• CLASSICAL SOLUTIONS
– *(,/.) classical membership queries to ! (randomly pick universe elements

and see if any are in !)

– *(.) classical samples from ! (Birthday Paradox)

Sampling from S

• In applications, when trying to estimate the size of a set ! ⊆ # , often we
can do more than make membership queries to !.

• Question: If we can make membership queries to !, and sample uniformly
from !, how efficiently can we solve AC',(?

• CLASSICAL SOLUTIONS
– *(#/-) classical membership queries to !
• Randomly pick universe elements and see if any are in !

– * - classical samples from !
• Birthday Paradox: sample from ! and see if any two samples are the same.

Sampling from S

1:
i S

S i
S Î

= å

Quantum Sampling from S
• Suppose the quantum algorithm is also given copies of the state:

• Models situations where ! can be efficiently “QSampled” (Aharonov & Ta-
Shma 2003)

• Then known quantum query lower bounds no longer apply!

• All the more so if the algorithm can also query an oracle that reflects
about | ⟩! :

1:
i S

S i
S Î

= å

Quantum Sampling from S
• Suppose the quantum algorithm is also given copies of the state:

• Models situations where ! can be efficiently “QSampled” (Aharonov & Ta-
Shma 2003)
– Many interesting sets can be efficiently QSampled, including perfect matchings

[JSV04] and grid points in convex bodies [DFK91].

– All problems in SZK can be efficiently reduced to some instance of QSampling.

• Then known quantum query lower bounds no longer apply!

• All the more so if the algorithm can also query an oracle that reflects about
⟩

1:
i S

S i
S Î

= å

Quantum Sampling from S
• Suppose the quantum algorithm is also given copies of the state:

• Models situations where ! can be efficiently “QSampled” (Aharonov & Ta-

Shma 2003)

• Then known quantum query lower bounds no longer apply.

– All the more so if the algorithm can also query an oracle that reflects about | ⟩! :

i.e., can apply the unitary transformation $ = & − ⟩|! ⟨!|.
– The ability to perform reflect about | ⟩! follows in a black-box way from the ability to

prepare the state | ⟩! unitarily.

1:
i S

S i
S Î

= å

Quantum Sampling from S
• Suppose the quantum algorithm is also given copies of the state:

• Models situations where ! can be efficiently “QSampled” (Aharonov & Ta-

Shma 2003)

• Then known quantum query lower bounds no longer apply.

– All the more so if the algorithm can also query an oracle that reflects about | ⟩! :

i.e., can apply the unitary transformation $ = & − 2 ⟩|! ⟨!|.
– The ability to perform reflect about | ⟩! follows in a black-box way from the ability to

prepare the state | ⟩! unitarily.

Recall: We can decide whether |"| ≤ $ or |"| ≥ 2$ using:

• CLASSICAL SOLUTIONS
1.) = +(-/$) classical membership queries to "
2. 0 = +($) classical samples from "

• QUANTUM	SOLUTIONS
–) = + </$ quantum membership queries to S (BHT 1998)

– 0 = + min </$,$A/B copies of | ⟩" and reflections

• + </$: project | ⟩" onto |1ñ+…+|Nñ and do amplitude amplification

• + $
D
E : Use “quantum collision” algorithm (BHT 1998) in a new way

Upper Bounds

Recall: We can decide whether |"| ≤ $ or |"| ≥ 2$ using:

• CLASSICAL SOLUTIONS
1.) = +(-/$) classical membership queries to "
2. 0 = +($) classical samples from "

• QUANTUM SOLUTIONS

1.) = + -/$ quantum membership queries to S (BHT 1998)

2. 0 = + min -/$, $6/7 copies of | ⟩" and reflections

• + -/$: project | ⟩" onto | ⟩1 + ⋯+ | ⟩; and do amplitude amplification

• + $6/7 : Use “quantum collision” algorithm (BHT 1998) in a new way

Upper Bounds

Recall: We can decide whether |"| ≤ $ or |"| ≥ 2$ using:

• CLASSICAL SOLUTIONS
1.) = +(-/$) classical membership queries to "
2. 0 = +($) classical samples from "

• QUANTUM SOLUTIONS

1.) = + -/$ quantum membership queries to S (BHT 1998)

2. 0 = + min -/$, $6/7 copies of | ⟩" and reflections

• + -/$: project | ⟩" onto | ⟩1 + ⋯+ | ⟩; and do amplitude amplification

• + $6/7 : Use “quantum collision” algorithm (BHT 1998) in a new way

Upper Bounds

Theorem: Given ! ⊆ # , any quantum algorithm that solves AC',(using)
queries to ! as well as * copies of | ⟩! and reflections about | ⟩! , requires

either:

) = Ω #/0 or * = Ω min #/0,04/5

Our Result

Proof of Lower Bound for
Quantum Query+QSampling

Algorithms for

Theorem: Given ! ⊆ # , any quantum algorithm to decide whether |!| ≤ '
or |!| ≥ 2' , using * queries to ! as well as + copies of | ⟩! and reflections

about | ⟩! , requires either:

* = Ω #/' or + = Ω min #/','3/4

Recall Result 1

Key Lemma: Suppose a quantum algorithm gets ! copies of | ⟩$ and makes %
membership queries to set $ with indicator vector &.
Let ((*) be its acceptance probability, averaged over all $ ⊆ - , with $ = *.
Then ((*) is a Laurent polynomial of degree ≤ 2(% + !) and antidegree≤ !.
Proof In Classical Case: Consider an algorithm that takes ! independent samples from $, and
then based on the sample runs a classical decision tree of depth %.

• The probability of getting ordered sample is {34, … , 36} is 4
|8|9 &:; < ⋯ < &:9.

• This is a degree-! polynomial in &, weighted by 4
|8|9.

• So probability of reaching any particular leaf is a degree-(! + %) polynomial in &, weighted
by 4

|8|9.

• Symmetrize this polynomial to get a degree-(! + %) univariate polynomial in |$|, with
weights proportional to 4

|8|9.

• This is a Laurent polynomial with the degree (! + %) and anti-degree !.

Key Lemma: Suppose a quantum algorithm gets ! copies of | ⟩$ and makes %
membership queries to set $ with indicator vector &.
Let ((*) be its acceptance probability, averaged over all $ ⊆ - , with $ = *.
Then ((*) is a Laurent polynomial of degree ≤ 2(% + !) and antidegree≤ !.
Proof In Classical Case: Consider an algorithm that takes ! independent samples from $, and
then (based on the sample) runs a classical decision tree of depth %.

• The probability of getting ordered sample is {34, … , 36} is 4
|8|9 &:; < ⋯ < &:9.

• This is a degree-! polynomial in &, weighted by 4
|8|9.

• So probability of reaching any particular leaf is a degree-(! + %) polynomial in &, weighted
by 4

|8|9.

• Symmetrize this polynomial to get a degree-(! + %) univariate polynomial in |$|, with
weights proportional to 4

|8|9.

• This is a Laurent polynomial with the degree (! + %) and anti-degree !.

Key Lemma: Suppose a quantum algorithm gets ! copies of | ⟩$ and makes %
membership queries to set $ with indicator vector &.
Let ((*) be its acceptance probability, averaged over all $ ⊆ - , with $ = *.
Then ((*) is a Laurent polynomial of degree ≤ 2 % + ! and antidegree≤ !.
Proof In Classical Case: Consider an algorithm that takes ! independent samples from $, and
then (based on the sample) runs a classical decision tree of depth %.

• The probability of getting ordered sample is {34, … , 36} is 4
|8|9 &:; < ⋯ < &:9.

• This is a degree-! polynomial in &, weighted by 4
|8|9.

• So probability of reaching any particular leaf is a degree-(! + %) polynomial in &, weighted
by 4

|8|9.

• Symmetrize this polynomial to get a degree-(! + %) univariate polynomial in |$|, with
weights proportional to 4

|8|9.

• This is a Laurent polynomial with the degree (! + %) and anti-degree !.

Key Lemma: Suppose a quantum algorithm gets ! copies of | ⟩$ and makes %
membership queries to set $ with indicator vector &.
Let ((*) be its acceptance probability, averaged over all $ ⊆ - , with $ = *.
Then ((*) is a Laurent polynomial of degree ≤ 2(% + !) and antidegree≤ !.
Proof In Classical Case: Consider an algorithm that takes ! independent samples from $, and
then (based on the sample) runs a classical decision tree of depth %.

• The probability of getting ordered sample is {34, … , 36} is 4
|8|9 &:; < ⋯ < &:9.

• This is a degree-! polynomial in &, weighted by 4
|8|9.

• So probability of reaching any particular leaf is a degree-(! + %) polynomial in &, weighted
by 4

|8|9.

• Symmetrize this polynomial to get a degree-(! + %) univariate polynomial in |$|, with
weights proportional to 4

|8|9.

• This is a Laurent polynomial with the degree (! + %) and anti-degree !.

Key Lemma: Suppose a quantum algorithm gets ! copies of | ⟩$ and makes %
membership queries to set $ with indicator vector &.
Let ((*) be its acceptance probability, averaged over all $ ⊆ - , with $ = *.
Then ((*) is a Laurent polynomial of degree ≤ 2(% + !) and antidegree≤ !.
Proof In Classical Case: Consider an algorithm that takes ! independent samples from $, and
then (based on the sample) runs a classical decision tree of depth %.

• The probability of getting ordered sample is {34, … , 36} is 4
|8|9 &:; < ⋯ < &:9.

• This is a degree-! polynomial in &, weighted by 4
|8|9.

• So probability of reaching any particular leaf is a degree-(! + %) polynomial in &, weighted
by 4

|8|9.

• Symmetrize this polynomial to get a degree-(! + %) univariate polynomial in |$|, with
weights proportional to 4

|8|9.

• This is a Laurent polynomial with the degree (! + %) and anti-degree !.

Underlying Polynomial Question
Suppose () ()

() { }

() ()

1

0 1 for 1, ,

1 2
, 2
3 3

p k g k h
k

p k k N

p w p w

æ ö= + ç ÷
è ø

£ £ Î

£ ³

!

Must Show: Either

!, ℎ univariate
real polynomials

()deg Ng
w

æ ö
=Wç ÷ç ÷

è ø
() ()1/4deg h w=Wor

“Explosion Argument”
• Either ! or ℎ must have a large derivative somewhere.
• If it’s low-degree, that means it takes large values (Markov).
• But ! # + ℎ %

& ∈ [0,1] for all # ∈ {1,… , /}.
• So the other polynomial must take large values of the opposite sign!
• When switching from ! to ℎ, the x-axis gets compressed, so Markov’s

inequality yields even larger values, etc. etc.

• But polynomials that grow without bound, on a compact set like
1, / can never have existed in the first place

“Explosion Argument”

0

1

0

1

1 w 2w n

g(x)
() 1'

6
g x

w
³

h(1/x)

• Either ! or ℎ must have a large derivative somewhere.
• If it’s low-degree, that means it takes large values (Markov).
• But ! # + ℎ %

& ∈ [0,1] for all # ∈ {1,… , /}.
• So the other polynomial must take large values of the opposite sign!
• When switching from ! to ℎ, the x-axis gets compressed, so Markov’s

inequality yields even larger values, etc. etc.

• But polynomials that grow without bound, on a compact set like
1, / can never have existed in the first place

Tightening the W(w1/4) to W(w1/3)

DUAL
POLYNOMIALS

Open Problems
• “Deep explanation” for why Laurent polynomials show up?

• Other applications of the Laurent polynomial method?

– Kretschmer, recently: Simpler proof of ~ÖN lower bound on approximate
degree of AND-OR tree!

• Complexity of Approximate Counting with Queries+QSamples but not
reflections?

• Lower-bound number of uses of a |0ñ«|Sñ oracle?

• Is there a “real-world” (non-black-box) scenario where membership
queries and QSampling are both easy, but approximate counting is hard?

