
A Note on the GKR Protocol

Justin Thaler∗

Abstract

This note describes a simplification of the GKR interactive proof for circuit evaluation (Goldwasser,
Kalai, and Rothblum, J. ACM 2015), as efficiently instantiated by Cormode, Mitzenmacher, and Thaler
(ITCS 2012). The simplification reduces the prover runtime, round complexity, and total communication
cost of the protocol by roughly 33%.

1 Introduction

Goldwasser, Kalai, and Rothblum described a powerful general-purpose interactive proof protocol [3]. This
protocol is framed in the context of circuit evaluation. Given a layered arithmetic circuit C of depth d, size
S(n), and fan-in 2, the GKR protocol allows a prover to evaluate C with a guarantee of correctness in time
poly(S(n)), while the verifier runs in time Õ(n + d logS(n)), where n is the length of the input and the
Õ notation hides polylogarithmic factors in n. Thus, for circuits of polynomial size and sublinear depth,
the verifier’s runtime is quasilinear in the input length.1 This can be much smaller than the total size of the
circuit, thereby saving the verifier substantial time relative to executing the computation locally.

Cormode, Mitzenmacher, and Thaler [2] (henceforth CMT) showed how to bring the runtime of the
prover in the GKR protocol down from poly(S(n)) to O(S(n) logS(n)). They also built a full implemen-
tation of the protocol and ran it on benchmark problems. Subsequent work by Thaler [5] showed how to
further reduce the prover runtime for circuits exhibiting repeated structure, such as that seen in any data
parallel computation.

This note describes a refinement of the protocol of CMT. In addition to providing a conceptual simpli-
fication, the refinement reduces the prover runtime, round complexity, and total communication cost of the
protocol by roughly 33% relative to the implementation of [2].

2 Notation and Background

To keep this note as self-contained as possible, this section defines interactive proofs (Section 2.1), describes
the sum-check protocol of Lund et al. [4] (Section 2.2), provides a high-level overview of the GKR protocol
(Section 2.4), and introduces necessary notation (Sections 2.3 and 2.5). Readers already familiar with the
GKR protocol can safely skip to Section 3.

∗Yahoo Labs
1In fact, the verifier in the GKR protocol can be implemented in O(n + d logS(n))) time, as shown in subsequent work

(cf. [5, 6]).
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2.1 Interactive Proofs

We begin by defining a valid interactive proof protocol for a function f .

DEFINITION 1 Consider a prover P and verifier V who both observe an input x and wish to compute a
function f : {0, 1}n → R for some set R. After the input is observed, P and V exchange a sequence of
messages. Denote the output of V on input x, given prover P and V’s random bits R, by out(V, x,R,P). V
can output⊥ if V is not convinced that P’s claim is valid. We say P is a valid prover with respect to V if for
all inputs x, PrR[out(V, x,R,P) = f(x)] = 1. We say V a valid verifier for f if there is at least one valid
prover P with respect to V , and for all provers P ′ and all inputs x, Pr[out(V, A,R,P ′) /∈ {f(x),⊥}] ≤ 1/3.
We say a prover-verifier pair (P,V) is a valid interactive proof protocol for f if V is a valid verifier for f
and P is a valid prover with respect to V . If P and V exchange r messages in total, we say the protocol has
dr/2e rounds.

The property that there is at least one valid prover P with respect to V is often called completeness, and
the property that for all provers P ′ and all inputs x, Pr[out(V, A,R,P ′) /∈ {f(x),⊥}] ≤ 1/3 is often called
soundness.

2.2 Sum-Check Protocol

The main technical primitive used within the GKR protocol is the sum-check protocol of Lund, Fortnow,
Karloff, and Nisan [4]. We present a full description of this protocol for completeness. See also [1, Chapter
8] for a complete exposition and proof of soundness.

Suppose we are given a v-variate polynomial g defined over a finite field F. The purpose of the sum-
check protocol is to compute the sum:

H :=
∑

b1∈{0,1}

∑
b2∈{0,1}

· · ·
∑

bv∈{0,1}

g(b1, . . . , bv).

In order to execute the protocol, the verifier needs to be able to evaluate g(r1, . . . , rv) for a randomly
chosen vector (r1, . . . , rv) ∈ Fv.

The protocol proceeds in v rounds as follows. In the first round, the prover sends a polynomial g1(X1),
and claims that g1(X1) =

∑
x2,...,xv∈{0,1}v−1 g(X1, x2, . . . , xv). Observe that if g1 is as claimed, then

H = g1(0) + g1(1). Also observe that the polynomial g1(X1) has degree deg1(g), the degree of variable
x1 in g. Hence g1 can be specified with deg1(g) + 1 field elements. In implementations, P can specify g by
sending the evaluation of g at each point in the set {0, 1, . . . ,deg1(g)}.

Then, in round j > 1, V chooses a value rj−1 uniformly at random from F and sends rj−1 to P . In
return, the prover sends a polynomial gj(xj), and claims that

gj(Xj) =
∑

(xj+1,...,xv)∈{0,1}v−j

g(r1, . . . , rj−1, Xj , xj+1, . . . , xv). (1)

The verifier compares the two most recent polynomials by checking gj−1(rj−1) = gj(0) + gj(1), and
rejecting otherwise. The verifier also rejects if the degree of gj is too high: each gj should have degree
degj(g), the degree of variable xj in g.

In the final round, the prover has sent gv(Xv) which is claimed to be g(r1, . . . , rv−1, Xv). V now checks
that gv(rv) = g(r1, . . . , rv) (recall that we assumed V can evaluate g at this point). If this test succeeds (and
so do all previous tests), then the verifier accepts, and is convinced that H = g1(0) + g1(1).
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PROPOSITION 1 (LUND ET AL. [4]) Let g be a v-variate polynomial defined over a finite field F, and let
(P,V) be the prover-verifier pair in the above description of the sum-check protocol. (P,V) is a valid
interactive proof protocol for the function H =

∑
b1∈{0,1}

∑
b2∈{0,1} · · ·

∑
bv∈{0,1} g(b1, . . . , bv).

2.3 Multilinear Extensions

For any field F, a d-variate polynomial p : Fd → F is said to be multilinear if it has degree at most 1 in
each of the d input variables. Given a function W : {0, 1}d → {0, 1} whose domain is the d-dimensional
Boolean hypercube, the multilinear extension (MLE) of W over F, denoted W̃ , is the unique multilinear
polynomial Fd → F that agrees with W on all Boolean-valued inputs. That is, W̃ is the unique multilinear
polynomial over F satisfying W̃ (x) =W (x) for all x ∈ {0, 1}d.

2.4 Overview of the GKR protocol

In the GKR protocol, P and V first agree on an arithmetic circuitC of fan-in 2 over a finite field F computing
the function of interest (C may have multiple outputs). C is assumed to be in layered form, meaning that the
circuit can be decomposed into layers, and wires only connect gates in adjacent layers. Suppose the circuit
has depth d; we will number the layers from 1 to d with layer d referring to the input layer, and layer 1
referring to the output layer.

In the first message, P tells V the (claimed) output of the circuit. The protocol then works its way in
iterations towards the input layer, with one iteration devoted to each layer. The purpose of iteration i is to
reduce a claim about the values of the gates at layer i to a claim about the values of the gates at layer i+ 1,
in the sense that it is safe for V to assume that the first claim is true as long as the second claim is true. This
is accomplished by applying the standard sum-check protocol to a certain polynomial (see Equation (2) in
Section 3 for details).

More concretely, the GKR protocol starts with a claim about the values of the output gates of the circuit,
but V cannot check this claim without evaluating the circuit herself, which is precisely what she wants to
avoid. So the first iteration uses a sum-check protocol to reduce this claim about the outputs of the circuit to
a claim about the gate values at layer 2 (more specifically, to a claim about an evaluation of the multilinear
extension of the gate values at layer 2). Once again, V cannot check this claim herself, so the second iteration
uses another sum-check protocol to reduce the latter claim to a claim about the gate values at layer 3, and so
on. Eventually, V is left with a claim about the inputs to the circuit, and V can check this claim on her own.

2.5 Additional Notation

Suppose we are given a layered arithmetic circuit C of size S(n), depth d(n), and fan-in two. Let Si denote
the number of gates at layer i of the circuit C. Assume Si is a power of 2 and let Si = 2si . In order to
explain how each iteration of the GKR protocol proceeds, we need to introduce several functions, each of
which encodes certain information about the circuit.

To this end, number the gates at layer i from 0 to Si − 1, and let Wi : {0, 1}si → F denote the function
that takes as input a binary gate label, and outputs the corresponding gate’s value at layer i. The GKR
protocol makes use of the multilinear extension W̃i of the function Wi.

The GKR protocol also makes use of the notion of a “wiring predicate” that encodes which pairs of
wires from layer i+1 are connected to a given gate at layer i in C. We define two functions, addi and multi
mapping {0, 1}si+2si+1 to {0, 1} which together constitute the wiring predicate of layer i of C. Specifically,
these functions take as input three gate labels (j1, j2, j3), and return 1 if gate j1 at layer i is the addition
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(respectively, multiplication) of gates j2 and j3 at layer i + 1, and return 0 otherwise. Let ˜addi and ˜multi
denote the multilinear extensions of addi and multi respectively.

Finally, let βsi(z, p) denote the function

βsi(z, p) =

si∏
j=1

((1− zj)(1− pj) + zjpj) .

It is straightforward to check that βsi is the multilinear extension of the function B(x, y) : {0, 1}si ×
{0, 1}si → {0, 1} that evaluates to 1 if x = y, and evaluates to 0 otherwise.

3 Details of CMT’s Implementation of the GKR Protocol

CMT’s implementation of the GKR protocol exploits the following identity. It can be shown that for any
z ∈ Fsi ,

W̃i(z) =
∑

(p,ω1,ω2)∈{0,1}si+2si+1

f (i)(p, ω1, ω2), (2)

where

f (i)(p, ω1, ω2) = βsi(z, p)·
(

˜addi(p, ω1, ω2)(W̃i+1(ω1) + W̃i+1(ω2)) + ˜multi(p, ω1, ω2)W̃i+1(ω1) · W̃i+1(ω2)
)
.

Iteration i of CMT therefore applies the sum-check protocol to the polynomial f (i). Since f (i) is defined
over si + 2si+1 variables, the sum-check protocol requires si + 2si+1 rounds. CMT show how to imple-
ment the prover in time O(S) per round, assuming each addition and multiplication operation in F can be
performed in O(1) time.

4 The Refinement

Our refinement applies the sum-check protocol to a different, simpler polynomial. This cuts the number of
rounds down to 2si+1, and decreases the total communication and the prover’s runtime by a similar constant
factor. Moreover, it completely removes the need to use the βsi polynomial.

The key to the refinement is to derive a simpler expression for W̃i(z) than that given in Equation (2).
This derivation crucially exploits the fact that the protocol is using only multilinear extensions W̃i of Wi,
˜addi of addi, and ˜multi of multi.2

THEOREM 2 For any z ∈ Fsi ,

W̃i(z) =
∑

(ω1,ω2)∈{0,1}2si+1

g(i)(ω1, ω2), (3)

where

g(i)(ω1, ω2) =
(

˜addi(z, ω1, ω2)(W̃i+1(ω1) + W̃i+1(ω2)) + ˜multi(z, ω1, ω2)W̃i+1(ω1) · W̃i+1(ω2)
)
. (4)

2More precisely, Theorem 2 holds for any extensions of addi(j1, j2, j3) and multi(j1, j2, j3), so long as the extensions are
multilinear in the variables corresponding to the first gate label, j1.
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PROOF. Notice that g(i), and hence also the right hand side of Equation (3), is a multilinear polynomial in
the variables of z. We now turn to showing that the right hand and left hand sides of Equation (3) agree for
all z ∈ {0, 1}si . This implies that the claim, because if two multilinear polynomials agree at all Boolean
inputs, they must be equal as formal polynomials.

Fix any z ∈ {0, 1}si , and assume that gate z at layer i is an addition gate (the derivation when z is a
multiplication gate is entirely analogous). Let a, b ∈ {0, 1}si+1 respectively denote the binary labels of the
first and second in-neighbors of the gate with label z at layer i.

Then by definition of of g(i) (cf. Equation (4)),∑
(ω1,ω2)∈{0,1}2si+1

g(i)(ω1, ω2) =

∑
(ω1,ω2)∈{0,1}2si+1

(
˜addi(z, ω1, ω2)(W̃i+1(ω1) + W̃i+1(ω2)) + ˜multi(z, ω1, ω2)W̃i+1(ω1) · W̃i+1(ω2)

)
. (5)

Observe that ˜multi(z, ω1, ω2) = 0 for all (ω1, ω2) ∈ {0, 1}2si+1 . Moreover, ˜addi(z, a, b) = 1, and
˜addi(z, ω1, ω2) = 0 for all other (ω1, ω2) ∈ {0, 1}2si+1 . Together, these facts imply that Expression (5) is

equal to
W̃i+1(a) + W̃i+1(b). (6)

Since W̃i+1 extends Wi+1, Expression (6) is equal to

Wi+1(a) +Wi+1(b). (7)

Since z is an addition gate with in-neighbors a and b, Expression (7) is equal to Wi(z), which is in turn
equal to W̃i(z), since W̃i extends Wi. This completes the proof.

2

By Theorem 2, rather than applying the sum-check protocol to the polynomial f (i) in iteration i, it
suffices to apply the sum-check protocol to the polynomial g(i). This requires 2si+1 rounds, since g(i) is
defined over this many variables. The prover’s computation in each round of the protocol is essentially
identical to the prover’s computation in the last 2si+1 rounds of the sum-check protocol applied to f (i) as in
CMT. The claimed efficiency improvements over CMT (in rounds, total communication, and prover time)
follow.
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