
Justin Thaler
Graham Cormode and
Michael Mitzenmacher

Streaming Graph Computations with
a Helpful Advisor

Data Streaming Model
  Stream: m elements from universe of size n

  e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, …

• Goal: Compute a function of stream, e.g., median, number of
distinct elements, frequency moments, heavy hitters.

• Challenge:
 (i) Limited working memory, i.e., sublinear(n,m).
 (ii) Sequential access to adversarially ordered data.
 (iii) Process each update quickly.

Slide derived from [McGregor 10]

Graph Streams
  S = <x1, x2, …, xm>; xi ∈[n] x [n]

  A defines a graph G on n vertices.

  Goal: compute properties of G.

  Challenge: subject to usual streaming
constraints.

Snapshot of Internet Graph
Source: Wikipedia

Bad News
  Many graph problems are impossible in

standard streaming model (require linear
space or many passes over data).

  E.g. Ω(n) space needed for connectivity,
bipartiteness. Ω(n2) space needed for
counting triangles, diameter, perfect
matching.

  Often hard even to approximate.

  Graph problems ripe for outsourcing.

Outsourcing Models
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order
Model [Das Sarma et al. 09] (is a special case of our model)

Outsourcing Models
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order
Model [Das Sarma et al. 09] (is a special case of our model)

  [Chakrabarti et al. 09] Online Annotation Model: Give
streaming algorithm access to powerful helper H who can
annotate the stream.

 Main motivation: Commercial cloud computing services such
as Amazon EC2. Helper is untrusted.

 Also, Volunteer Computing (SETI@home. Great Internet
Mersenne Prime Search, etc.)

 Weak peripheral devices.

Online Annotation Model
  Problem: Given stream S, want to compute f(S):

S=<x1, x2, x3, x4, x5, x6, ... , xm>

  Helper H: augments stream with h-word annotation:

(S,a)=<x1, x2, x3, x4, x5, x6, …, xm, a1, a2, ... , ah>

  Verifier V: using v words of space and random string r, run verification
algorithm to compute g(S,a,r) such that for all a either:

 a)Prr[g(S,a,r) =f(S)]=1 (we say a is valid for S) or

 b) Prr[g(S,a,r) =⊥]≥1-δ (we say a is δ-invalid for S)

 c) And at least one a is valid for S.

Note: this model differs slightly from [Chakrabarti et al. 09].

Online Annotation Model

  Two costs: words of annotation h and working memory v.
 We refer to (h, v)-protocols.
  Primarily interested in minimizing v.
  But strive for optimal tradeoffs between h and v.
  Proves more challenging for graph streams than numerical

streams. Algebraic structure seems critical.

Fingerprinting
  Need a way to test multiset equality (e.g. to see if two

streams have the same frequency distribution).
  But need to do so in a streaming fashion.
 We often use this to make sure H is “consistent”.

  Solution: fingerprints.
 Hash functions that can be computed by a streaming verifier.
  If S≠ S’ as frequency distributions, then f(S) ≠ f(S’) w.h.p.

  We choose a fingerprint function f that is linear. f(S ∘S’) =
f(S) + f(S’) where ∘ denotes concatenation. Will need this
for matrix-vector multiplication.

Two Approaches To Designing Protocols
1.  Prove matching upper and lower bounds on a quantity.

  One bound often easy: just give feasible solution.
  Proving optimality more difficult. Usually requires

problem structure.

2.  Use H to “verify” execution of a non-streaming algorithm.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.
  Protocol (“naïve” matrix-vector multiplication):

1.  H provides primal-feasible solution x.
2.  For each row i of A:

 Repeat entries of x and row i of A in order to prove feasibility.
Fingerprints ensure consistency.

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y).

Streaming LP problem
  Suppose stream A contains (only the non-zero) entries of matrix

A, vectors b and c, interleaved in any order (updates are of the
form e.g. “add y to entry (i,j) of A”). The LP streaming problem
on A is to determine max {cT x | Ax ≤ b}.

  Theorem: There is a (|A|, 1) protocol for the LP streaming
problem, where |A| is number of non-zero entries in A.
  Protocol (“naïve” matrix-vector multiplication):

1.  H provides primal-feasible solution x.
2.  For each row i of A:

 Repeat entries of x and row i of A in order to prove feasibility.
Fingerprints ensure consistency.

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y).

  Details on precision of rationals are skipped.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.
  Corollary: (m, 1) protocols for max-flow, min-cut,

minimum-weight bipartite perfect matching, and shortest s-t
path. Lower bound of hv=Ω(n2) for all four.

Application to Graph Streams
  Corollary: Protocol for TUM IPs, since optimality can be

proven via a solution to the dual of its LP relaxation.
  Corollary: (m, 1) protocols for max-flow, min-cut,

minimum-weight bipartite perfect matching, and shortest s-t
path. Lower bound of hv=Ω(n2) for all four.

  A is sparse for the problems above, which suits the naïve protocol.
For denser A, can get optimal tradeoffs between h and v.

Dense Matrix-Vector Multiplication
  We will get optimal (n1+α, n1-α) protocol. Lower bound:

hv=Ω(n2).
 Corollary I: Protocols for dense LPs, effective resistances,

verifying eigenvalues of Laplacian.

Dense Matrix-Vector Multiplication
  We will get optimal (n1+α, n1-α) protocol. Lower bound:

hv=Ω(n2).
 Corollary I: Protocols for dense LPs, effective resistances,

verifying eigenvalues of Laplacian.
 Corollary II: Optimal tradeoffs for Quadratic Programs,

Second-Order Cone Programs. (n2, 1) protocol for Semi-
definite Programs.

Dense Matrix-Vector Multiplication
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

Dense Matrix-Vector Multiplication
  First idea: Treat as n separate inner-product queries, one for

each row of A.
 Worse than “naïve” solution.
 Multiplies both h and v by n, as compared to a single inner-

product query.

  Key observation: one vector, x, in each inner-product query
is constant.
 This plus linear fingerprints lets us just multiply h by n.
  v will be the same as for a single inner product query.

Approach 2: Simulate an Algorithm
  Main tool: Offline memory checker [Blum et al. ’94]. Allows

efficient verification of a sequence of accesses to a large
memory.

  Lets us convert any deterministic algorithm into a protocol
in our model.

  Running time of the algorithm in the RAM model becomes
annotation size h.

Memory Checker [Blum et al. ’94]
  Consider a memory transcript of a sequence of reads and writes

to memory.
  A transcript is valid if each read of address i returns the last

value written to that address.
  Memory checker requires transcript be provided in a

carefully chosen (“augmented”) format.
 Augmentation blows up transcript size only by constant factor.

  V checks validity by keeping a constant number of
fingerprints and performing simple local checks on the
transcript.

Simulation Theorem
 Any graph algorithm M in RAM model requiring time t

can be (verifiably) simulated by an (m+t, 1)-protocol.

  Proof sketch:
  Step 1: H first plays a valid adjacency-list representation of G to

“initialize memory”.

  Step 2: H provides a valid augmented transcript T of the read
and write operations performed by algorithm.

  V checks validity using memory-checker. V also checks all read/
write operations are as prescribed by M.

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King
‘97].

Simulation Theorem
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King
‘97].

  Lower bounds: hv=Ω(n2) for single source and all-pairs
shortest paths. hv=Ω(n2) for MST if edge weights specified
incrementally.

Pitfall of Memory-Checking
Cannot simulate randomized algorithms

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

  (I + A)l
ij >0 if and only if there is a path of length at most l

from i to j.

Diameter
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2).
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix

multiplication.

  Let A be adjacency matrix of G.

  (I + A)l
ij >0 if and only if there is a path of length at most l

from i to j.
  Protocol:
1.  H claims diameter is l

2.  Use repeated squaring to prove (I+A) l has an entry that is 0,
 and (I+A) l+1

 ≠ 0 for all (i,j).

Summary
  (m, 1)-protocol for max-matching. hv=Ω(n2) lower bound

for dense graphs, so we can’t do better.
  (m, 1)-protocols for LPs TUM IPs. hv=Ω(n2) lower bound

for several TUM IPs.
  Optimal (n1+α, n1-α)-protocol for dense matrix-vector

multiplication. (n1+α, n1-α)-protocols for effective
resistance, verifying eigenvalues of Laplacian or Adjacency
matrix, LPs, QPs, SOCPs.

  General simulation theorem; applications to MST, shortest
paths.

  (n2log n, 1) protocol for Diameter. hv=Ω(n2) lower bound.

Open questions
  Tradeoffs between h, v for matching, MST, diameter?

  Distributed computation: Protocols that work with Map-
Reduce.

  What if we allow multiple rounds of interaction between H
and V? Can we get exponentially better protocols?

Thank you!

