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Data Streaming Model 
  Stream: m elements from universe of size n 

   e.g., S=<x1, x2, ... , xm> = 3,5,3,7,5,4,8,7,5,4,8,6,3,2, … 

• Goal: Compute a function of stream, e.g., median, number of 
distinct elements, frequency moments, heavy hitters.  

• Challenge:  
 (i) Limited working memory, i.e., sublinear(n,m). 
 (ii) Sequential access to adversarially ordered data. 
 (iii) Process each update quickly. 

Slide derived from [McGregor 10] 



Graph Streams 
  S = <x1, x2, …, xm>; xi ∈[n] x [n] 

  A defines a graph G on n vertices. 

  Goal: compute properties of G.  

  Challenge: subject to usual streaming 
constraints. 

Snapshot of Internet Graph 
Source: Wikipedia 



Bad News 
  Many graph problems are impossible in 

standard streaming model (require linear 
space or many passes over data). 

  E.g. Ω(n) space needed for connectivity, 
bipartiteness. Ω(n2) space needed for 
counting triangles, diameter, perfect 
matching. 

  Often hard even to approximate.  

  Graph problems  ripe for outsourcing. 



Outsourcing Models 
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams 

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order 
Model [Das Sarma et al. 09] (is a special case of our model) 



Outsourcing Models 
  Stream Punctuation [Tucker et al. 05], Proof Infused Streams 

[Li et al. 07], Stream Outsourcing [Yi et al. 08], Best-Order 
Model [Das Sarma et al. 09] (is a special case of our model) 

  [Chakrabarti et al. 09] Online Annotation Model: Give 
streaming algorithm access to powerful helper H who can 
annotate the stream. 

 Main motivation: Commercial cloud computing services such 
as Amazon EC2. Helper is untrusted. 

 Also, Volunteer Computing (SETI@home. Great Internet 
Mersenne Prime Search, etc.) 

 Weak peripheral devices. 



Online Annotation Model 
  Problem: Given stream S, want to compute f(S):  

S=<x1, x2, x3, x4, x5, x6, ... , xm>  

  Helper H: augments stream with h-word annotation:  

(S,a)=<x1, x2, x3, x4, x5, x6, …, xm, a1, a2, ... , ah>  

   Verifier V: using v words of space and random string r, run verification 
algorithm to compute g(S,a,r) such that for all a either:  

 a)Prr[g(S,a,r) =f(S)]=1 (we say a is valid for S) or 

 b) Prr[g(S,a,r) =⊥]≥1-δ  (we say a is δ-invalid for S) 

 c) And at least one a is valid for S. 

Note: this model differs slightly from [Chakrabarti et al. 09].  



Online Annotation Model 

  Two costs: words of annotation h and working memory v. 
 We refer to (h, v)-protocols. 
  Primarily interested in minimizing v. 
  But strive for optimal tradeoffs between h and v. 
  Proves more challenging for graph streams than numerical 

streams. Algebraic structure seems critical. 



Fingerprinting 
  Need a way to test multiset equality (e.g. to see if two 

streams have the same frequency distribution). 
  But need to do so in a streaming fashion. 
 We often use this to make sure H is “consistent”. 

  Solution: fingerprints.  
 Hash functions that can be computed by a streaming verifier. 
  If S≠ S’ as frequency distributions, then f(S) ≠ f(S’) w.h.p. 

  We choose a fingerprint function f  that is linear. f(S ∘S’) = 
f(S) + f(S’) where  ∘ denotes concatenation. Will need this 
for matrix-vector multiplication. 



Two Approaches To Designing Protocols 
1.  Prove matching upper and lower bounds on a quantity. 

  One bound often easy: just give feasible solution. 
  Proving optimality more difficult. Usually requires 

problem structure. 

2.  Use H to “verify” execution of a non-streaming  algorithm. 



Streaming LP problem 
  Suppose stream A contains (only the non-zero) entries of matrix 

A, vectors b and c, interleaved in any order (updates are of the 
form e.g. “add y to entry (i,j) of A”). The LP streaming problem 
on A is to determine max {cT x | Ax ≤ b}.  
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3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y). 



Streaming LP problem 
  Suppose stream A contains (only the non-zero) entries of matrix 

A, vectors b and c, interleaved in any order (updates are of the 
form e.g. “add y to entry (i,j) of A”). The LP streaming problem 
on A is to determine max {cT x | Ax ≤ b}.  

  Theorem: There is a (|A|, 1) protocol for the LP streaming 
problem, where |A| is number of non-zero entries in A. 
  Protocol (“naïve” matrix-vector multiplication):  

1.  H provides primal-feasible solution x.  
2.  For each row i of A: 

 Repeat entries of x and row i of A in order to prove feasibility. 
Fingerprints ensure consistency. 

3.  Repeat for dual-feasible solution y. Accept if value(x)=value(y). 

  Details on precision of rationals are skipped. 
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proven via a solution to the dual of its LP relaxation. 
  Corollary: (m, 1) protocols for max-flow, min-cut, 

minimum-weight bipartite perfect matching, and shortest s-t 
path. Lower bound of hv=Ω(n2) for all four. 

  A is sparse for the problems above, which suits the naïve protocol. 
For denser A, can get optimal tradeoffs between h and v. 



Dense Matrix-Vector Multiplication 
  We will get optimal (n1+α,  n1-α) protocol. Lower bound: 

hv=Ω(n2). 
 Corollary I: Protocols for dense LPs, effective resistances, 

verifying eigenvalues of Laplacian.  
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hv=Ω(n2). 
 Corollary I: Protocols for dense LPs, effective resistances, 

verifying eigenvalues of Laplacian. 
 Corollary II: Optimal tradeoffs for Quadratic Programs,  

Second-Order Cone Programs. (n2, 1) protocol for Semi-
definite Programs. 



Dense Matrix-Vector Multiplication 
  First idea: Treat as n separate inner-product queries, one for 
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Dense Matrix-Vector Multiplication 
  First idea: Treat as n separate inner-product queries, one for 

each row of A.  
 Worse than “naïve” solution. 
 Multiplies both h and v by n, as compared to a single inner-

product query. 

  Key observation: one vector, x, in each inner-product query 
is constant. 
 This plus linear fingerprints lets us just multiply h by n.  
  v will be the same as for a single inner product query. 



Approach 2: Simulate an Algorithm 
  Main tool: Offline memory checker [Blum et al. ’94]. Allows 

efficient verification of a sequence of accesses to a large 
memory.  

   Lets us convert any deterministic algorithm into a protocol 
in our model. 

  Running time of the algorithm in the RAM model becomes 
annotation size h. 



Memory Checker [Blum et al. ’94] 
  Consider a memory transcript of a sequence of reads and writes 

to memory. 
  A transcript is valid if each read of address i returns the last 

value written to that address. 
  Memory checker requires transcript be provided in a 

carefully chosen (“augmented”) format.  
 Augmentation blows up transcript size only by constant factor. 

  V checks validity by keeping a constant number of 
fingerprints and performing simple local checks on the 
transcript.  



Simulation Theorem 
 Any graph algorithm M in RAM model requiring time t 

can be (verifiably) simulated by an (m+t, 1)-protocol. 

   Proof sketch:  
  Step 1: H first plays a valid adjacency-list representation of G to 

“initialize memory”.  

  Step 2: H provides a valid augmented transcript T of the read 
and write operations performed by algorithm.  

  V checks validity using memory-checker. V also checks all read/
write operations are as prescribed by M. 
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Simulation Theorem 
 Corollary: (m, 1)-protocol for MST; (m + n log n, 1)-protocol 

to verify single-source shortest paths; (n3,1)-protocol for all-
pairs shortest paths.  

  Proof for MST: Given a spanning tree T, there exists a linear-
time algorithm M for verifying that T is minimum e.g. [King 
‘97]. 

  Lower bounds: hv=Ω(n2) for single source and all-pairs 
shortest paths. hv=Ω(n2) for MST if edge weights specified 
incrementally.  



Pitfall of Memory-Checking 
Cannot simulate randomized algorithms 
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Diameter 
  Theorem: (n2 log n, 1) protocol. Lower bound: hv=Ω(n2). 
  [Chakrabarti et al. 09]: (n2, 1) protocol for matrix-matrix 

multiplication. 

  Let A be adjacency matrix of G. 

  (I + A)l
ij >0 if and only if there is a path of length at most l 

from i to j. 
  Protocol: 
1.  H claims diameter is l 

2.  Use repeated squaring to prove (I+A) l has an entry that is 0, 
 and (I+A) l+1

  ≠ 0 for all (i,j). 



Summary 
  (m, 1)-protocol for max-matching. hv=Ω(n2) lower bound 

for dense graphs, so we can’t do better.  
  (m, 1)-protocols for LPs TUM IPs. hv=Ω(n2) lower bound 

for several TUM IPs. 
  Optimal (n1+α,  n1-α)-protocol for dense matrix-vector 

multiplication. (n1+α,  n1-α)-protocols for effective 
resistance, verifying eigenvalues of Laplacian or Adjacency 
matrix, LPs, QPs, SOCPs. 

  General simulation theorem; applications to MST, shortest 
paths. 

  (n2log n, 1) protocol for Diameter. hv=Ω(n2) lower bound. 



Open questions 
  Tradeoffs between h, v for matching, MST, diameter? 

  Distributed computation: Protocols that work with Map-
Reduce. 

  What if we allow multiple rounds of interaction between H 
and V? Can we get exponentially better protocols? 



Thank you! 


